Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlike mammals, adult avians are able to regenerate cochlear sensory hair cells following injury. Brainstem auditory neurons in chicken nucleus magnocellularis (NM), which receive their sole excitatory afferent input from the cochlea, were examined for evidence of mitosis during ototoxin-induced loss and regeneration of cochlear hair cells. Using tritiated thymidine as a mitotic marker in tissue processed for autoradiography and counterstained with thionin, labeled NM neurons and glia were counted from chickens killed 16 days after gentamicin or saline injections. Newly generated NM neurons were observed during cochlear hair cell regeneration. More labeled neurons were observed in the experimental chickens, but a few were also seen in the control chickens. We predicted labeled NM neurons would be found solely in the rostral high frequency region, given the gentamicin-induced high frequency cochlear hair cell loss and regeneration. However, the labeled NM neurons were located throughout the tonotopic axis of the nucleus. The total number of labeled neurons was lower than predicted. Many labeled NM glia were observed in experimental and control chickens. Labeled cells were also observed throughout the chicken brainstem and cerebellum in both experimental and control chickens, indicating great potential for CNS plasticity. Results in NM indicate the avian auditory system is capable of regenerating brainstem auditory neurons in addition to the previously well-established capability of regenerating cochlear hair cells in response to ototoxic injury. Recovery of both central and peripheral auditory components will be necessary to restore hearing damaged by noise or ototoxic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(02)02539-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!