Toll-like receptors (TLRs) are a group of evolutionary conserved proteins with diverse biological functions. In Drosophila melanogaster, Toll protein plays an important role in pattern formation in embryogenesis and in antimicrobial immunity in larvae and adults. In insects, Toll and two other related proteins, Tehao and 18-wheeler have been shown to participate in the activation of the innate immune responses to fungal and bacterial pathogens. In this paper we report the cloning and characterization of four TLR gene from malaria vector mosquito Anopheles gambiae, AgToll, AgToll6, AgTrex, and AgToll9, orthologues of DmToll, DmToll6, DmTollo (Toll8) and DmToll9 (CG5528) in Drosophila melanogaster. The expression profiles of these genes during development, in different adult tissues and after immune challenge were examined. As expected for the orthologue of Drosophila Toll, AgToll was found to be expressed highly in the ovary and may play a role in pattern formation during embryogenesis. AgToll9, surprisingly, was found to be highly expressed in the adult gut. The potential roles of these genes in development and immunity were discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0965-1748(02)00053-x | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!