The vasopressin V3 receptor (V3) is specifically expressed in pituitary corticotropes and mediates the stimulatory effect of vasopressin on adrenocorticotropic hormone (ACTH) release. The V3 gene is overexpressed in corticotrope pituitary tumours compared to normal pituitaries. We hypothesized that V3 overexpression might induce changes in corticotrope function and alter the regulation of the hypothalamic-pituitary-adrenal axis. Thus, we generated transgenic mice (POMV3) expressing the human V3 receptor in the pituitary under the control of rat pro-opiomelanocortin (POMC) promoter sequences. The transgene was efficiently transcribed and vasopressin binding was increased in both corticotropes and melanotropes. In-vitro ACTH release and inositol phosphate formation were unchanged in POMV3 pituitaries, but the responses to vasopressin were significatively increased. In vivo, basal circulating concentrations of ACTH in POMV3 mice were similar to those of controls but corticosterone concentrations were moderately increased. In addition, the levels of POMC mRNA in the transgenic pituitaries were comparable to those of control mice. Finally, POMV3 mice responded with a similar maximal increase of ACTH and corticosterone to a 20-min acute restraint stress. Together, these results show that hypophyseal V3 overexpression led to increased basal concentrations of corticosterone and suggest that the negative glucocorticoid feedback may be altered at the pituitary level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2826.2002.00834.x | DOI Listing |
Oncogene
January 2025
The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
Am J Physiol Renal Physiol
January 2025
Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Vasopressin (VP) activates protein kinase A (PKA), resulting in phosphorylation events and membrane accumulation of aquaporin-2 (AQP2). Epidermal growth factor receptor (EGFR) inhibition with erlotinib also induces AQP2 membrane trafficking with a phosphorylation pattern similar to VP, but without increasing PKA activity. Here, we identify the ribosomal s6 kinase (RSK) as a major mediator phosphorylating AQP2 in this novel, erlotinib-induced pathway.
View Article and Find Full Text PDFEgypt Heart J
January 2025
Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
Background: Hyponatremia is one of the complicating findings in acute decompensated heart failure. Decrease in cardiac output and systemic blood pressure triggers activation of renin-angiotensin-aldosterone system, antidiuretic hormone, and norepinephrine due to the perceived hypovolemia. Fluid-overloaded heart failure patients are commonly treated with loop diuretics, acutely decompensated heart failure patients tend to be less responsive to conventional oral doses of a loop diuretic, while other different diuretics could work in different part of nephron circulation system.
View Article and Find Full Text PDFPharmacol Res
January 2025
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:
β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
Arginine vasopressin (AVP) plays a crucial role in various physiological processes including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. AVP acts through three distinct receptor subtypes, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!