The pharmacokinetics of selamectin were evaluated in cats and dogs, following intravenous (0.05, 0.1 and 0.2 mg/kg), topical (24 mg/kg) and oral (24 mg/kg) administration. Following selamectin administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). After intravenous administration of selamectin to cats and dogs, the mean maximum plasma concentrations and area under the concentration-time curve (AUC) were linearly related to the dose, and mean systemic clearance (Clb) and steady-state volume of distribution (Vd(ss)) were independent of dose. Plasma concentrations after intravenous administration declined polyexponentially in cats and biphasically in dogs, with mean terminal phase half-lives (t(1/2)) of approximately 69 h in cats and 14 h in dogs. In cats, overall Clb was 0.470 +/- 0.039 mL/min/kg (+/-SD) and overall Vd(ss) was 2.19 +/- 0.05 L/kg, compared with values of 1.18 +/- 0.31 mL/min/kg and 1.24 +/- 0.26 L/kg, respectively, in dogs. After topical administration, the mean C(max) in cats was 5513 +/- 2173 ng/mL reached at a time (T(max)) of 15 +/- 12 h postadministration; in dogs, C(max) was 86.5 +/- 34.0 ng/mL at T(max) of 72 +/- 48 h. Bioavailability was 74% in cats and 4.4% in dogs. Following oral administration to cats, mean C(max) was 11,929 +/- 5922 ng/mL at T(max) of 7 +/- 6 h and bioavailability was 109%. In dogs, mean C(max) was 7630 +/- 3140 ng/mL at T(max) of 8 +/- 5 h and bioavailability was 62%. There were no selamectin-related adverse effects and no sex differences in pharmacokinetic parameters. Linearity was established in cats and dogs for plasma concentrations up to 874 and 636 ng/mL, respectively. Pharmacokinetic evaluations for selamectin following intravenous administration indicated a slower elimination from the central compartment in cats than in dogs. This was reflected in slower clearance and longer t(1/2) in cats, probably as a result of species-related differences in metabolism and excretion. Inter-species differences in pharmacokinetic profiles were also observed following topical administration where differences in transdermal flux rates may have contributed to the overall differences in systemic bioavailability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2885.2002.00415.x | DOI Listing |
J Am Vet Med Assoc
January 2025
1Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN.
Objective: To measure the prevalence of antibiotic use in dogs and cats, identify the most common antibiotic drugs prescribed, and determine the most common indications for use.
Methods: Point-prevalence survey methodology was used to collect antibiotic prescribing data for cats and dogs from 1 practice day in 2021 at nonacademic primary care and referral practices in the US.
Results: 52 practices participated, comprising records for 2,599 dogs and cats.
JAC Antimicrob Resist
February 2025
Zoetis Reference Laboratory, Shanghai, China.
Objectives: In this study, bacteria isolated from companion animals in China were taxonomically identified and assessed for antimicrobial susceptibility to evaluate the prevalence of antimicrobial resistance (AMR) in pets.
Methods: From October 2022 to October 2023, 5468 samples were collected from pets, predominantly from cats and dogs, in China, of which 5253 bacterial strains were identified (>98%). Antimicrobial susceptibility was assessed using the VITEK 2 COMPACT system and the Kirby-Bauer disc diffusion method.
Psychol Rep
January 2025
Department of Public Policy, Management, and Analytics, University of Illinois at Chicago, Chicago, IL, USA.
Human biological and cultural evolution is tied to the relationships established with other animals. Attachment is one of the mechanisms established between dogs/cats and humans and allows the generation of affective bonds and close proximity. Many instruments have been used to study attachment of people to their dogs/cats, such as the Lexington Attachment to Pets Scale (LAPS).
View Article and Find Full Text PDFFront Vet Sci
January 2025
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Interactions between humans and livestock could increase the risk of zoonotic disease transmission. In addition, limited knowledge of zoonoses and foodborne diseases among livestock farmers could heighten the risks of foodborne illness and outbreaks of zoonotic diseases. This study evaluated the awareness of zoonotic diseases and preventive practices for zoonotic and foodborne diseases among livestock farmers of the Chitwan, Rupandehi, and Tanahun districts of Nepal by conducting a cross-sectional survey of 280 livestock farmers.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America.
Reactivation of Trypanosoma cruzi transmission by native vectors with different domiciliation capabilities is a major concern for Chagas disease control programs. T. cruzi transmission via intra-domestic Rhodnius prolixus was certified as interrupted by the Pan American Health Organization in Miraflores municipality (Boyacá, Colombia) in 2019.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!