This paper is the third in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of gamma-Glutamyltransferase; Part 7. Certification of Four Reference Materials tamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method (1). Differences are tabulated and commented on in Appendix 1.

Download full-text PDF

Source
http://dx.doi.org/10.1515/CCLM.2002.111DOI Listing

Publication Analysis

Top Keywords

measurement catalytic
32
reference procedure
20
procedure measurement
20
catalytic concentration
20
reference
12
reference procedures
12
procedures measurement
12
catalytic activity
12
activity concentrations
12
concentrations enzymes
12

Similar Publications

For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.

View Article and Find Full Text PDF

Background: UFMylation is an understudied ubiquitin-like post-translational modification (PTM). Like ubiquitin, UFM1 is conjugated to substrates via a catalytic cascade involving a UFM1-specific E1 (UBA5), E2 (UFC1), and an E3 ligase complex (UFL1, DDRGK1 and CDK5RAP3). UFMylation is reversible, and this is mediated by UFSP2.

View Article and Find Full Text PDF

Evaluation of hypoxia-inducible factor-1α and urine non-transferrin-bound iron concentrations in cats with chronic kidney disease.

Front Vet Sci

December 2024

School of Veterinary Medicine, College of Bio-Resources and Agriculture, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan.

Introduction: Hypoxia-inducible factors (HIF) regulate gene transcription, which aids hypoxia adaptation while promoting renal fibrosis. Non-transferrin-bound iron (NTBI) is a catalytic form of iron that can lead to oxidative damage. However, NTBI in cat biofluids has rarely been evaluated.

View Article and Find Full Text PDF

Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes.

Macromol Biosci

January 2025

Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

To address the rising prevalence of bacterial infections and the need for innovative therapeutic solutions, this study has developed a novel antibacterial hydrogel composite composed of Aloe vera, gelatin, sodium alginate, and Sterculia monosperma-silver nanoparticles (SM-AgNPs) loaded curcumin-nanoliposomes (NLPs). The aloe vera/gelatin/sodium alginate hydrogels (AGS) are prepared using different weight ratios of Aloe vera, gelatin, and sodium alginate, aiming to optimize mechanical properties and biocompatibility for biomedical applications. The incorporation of SM-AgNPs and curcumin-loaded NLPs enhanced the hydrogels' antibacterial properties.

View Article and Find Full Text PDF

A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!