The formation and bipolar translocation of an ectoplasmic cytoskeleton of rings and meridional bands was studied in interphase zygotes of the glossiphoniid leech Theromyzon trizonare. Zygotes consisted of a peripheral organelle-rich ectoplasm and an internal yolk-rich endoplasm. After microinjection of labeled tubulin and/or actin, zygotes were examined by time-lapse video imaging, immunofluorescence and confocal microscopy. The rings and meridional bands were formed by condensation of a network of moving cytasters that represented ectoplasmic secondary centers of microtubule and actin filament nucleation. In some cases the network of cytasters persisted between the rings. The cytoskeleton had an outer actin layer and an inner microtubule layer that merged at the irregularly-shaped boundary zone. Bipolar translocation of the rings, meridional bands, or the network of cytasters led to accumulation of the cytoskeleton at both zygote poles. Translocation of the cytoskeleton was slowed or arrested by microinjected taxol or phalloidin, in a dose-dependent fashion. Results of drug treatment probably indicate differences in the degree and speed at which the cytoskeleton becomes stabilized. Moreover, drugs that selectively stabilized either microtubules or actin filaments stabilized and impaired movement of the entire cytoskeleton. Microtubule poisons and latrunculin-B failed to disrupt the cytoskeleton. It is concluded that the microtubule and actin cytoskeletons are dynamic, presumably cross-linked and resistant to depolymerizing drugs. They probably move along each other by a sliding mechanism that depends on the instability of microtubules and actin filaments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.10069 | DOI Listing |
J Cell Sci
January 2025
School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
The cytoplasm exhibits viscoelastic properties, displaying both solid and liquid-like behavior, and can actively regulate its mechanical attributes. The cytoskeleton is a major regulator among the numerous factors influencing cytoplasmic mechanics. We explore the interdependence of various cytoskeletal filaments and the impact of their density on cytoplasmic viscoelasticity.
View Article and Find Full Text PDFBiophys J
January 2025
Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India. Electronic address:
The polymerization of cytoskeletal filaments is regulated by both biochemical pathways, as well as physical factors such as crowding. The effect of crowding in vivo emerges from the density of intracellular components. Due to the complexity of the intracellular environment, most studies are based on either in vitro reconstitution or theory.
View Article and Find Full Text PDFBio Protoc
January 2025
ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.
The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.
View Article and Find Full Text PDFJ Cell Biol
April 2025
University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
Arginylation is the posttranslational addition of arginine to a protein by arginyltransferase-1 (ATE1). Previous studies have found that ATE1 targets multiple cytoskeletal proteins, and Ate1 deletion causes cytoskeletal defects, including reduced cell motility and adhesion. Some of these defects have been linked to actin arginylation, but the role of other arginylated cytoskeletal proteins has not been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!