It is presumed that the evolution of morphological diversity in animals and plants is driven by changes in the developmental processes that govern morphology, hence basically by changes in the function and/or expression of a defined set of genes that control these processes. A large body of evidence has suggested that changes in developmental gene regulation are the predominant mechanisms that sustain morphological evolution, being much more important than the evolution of the primary sequences and functions of proteins. Recent reports challenge this idea by highlighting functional evolution of Hox proteins during the evolutionary history of arthropods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.10146 | DOI Listing |
Biol Psychiatry Glob Open Sci
March 2025
McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
Noncoding RNAs comprise most of the transcriptome and represent an emerging area of research. Among them, small nucleolar RNAs (snoRNAs) have emerged as a promising target because they have been associated with the development and evolution of several diseases, including psychiatric disorders. snoRNAs are expressed in the brain, with some showing brain-specific expression that indicates specific roles in brain development, function, and dysfunction.
View Article and Find Full Text PDFEvolutionary sparse learning (ESL) uses a supervised machine learning approach, Least Absolute Shrinkage and Selection Operator (LASSO), to build models explaining the relationship between a hypothesis and the variation across genomic features (e.g., sites) in sequence alignments.
View Article and Find Full Text PDFMater Today Bio
February 2025
The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Systems Biophysics, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany.
How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250300, China.
Protein circular permutations are crucial for understanding protein evolution and functionality. Traditional detection methods face challenges: sequence-based approaches struggle with detecting distant homologs, while structure-based approaches are limited by the need for structure generation and often treat proteins as rigid bodies. Protein Language Model-based alignment tools have shown advantages in utilizing sequence information to overcome the challenges of detecting distant homologs without requiring structural input.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!