Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In an effort to better understand the molecular events responsible for progression of prostate carcinoma to metastatic disease, we have recently identified a homozygous deletion at 12p12-13 involving ETV6 (tel). Although mutational analysis of ETV6 has not been examined previously in prostate carcinoma, it is an attractive candidate prostate cancer tumor suppressor gene since as it previously has been implicated in malignancy. Therefore, we decided to analyze 43 prostate cell lines, xenografts, and metastatic foci for inactivating mutations.
Methods: DNA was isolated from 7 cell lines, 18 xenografts, and 18 metastatic deposits. Single-strand conformational polymorphism (SSCP) analysis of ETV6, was performed by polymerase chain reaction (PCR) amplification of each exon by using intron specific primers. PCR products were then resolved by gel electrophoresis, and aberrantly migrating PCR products were then sequenced.
Results: Two previously described polymorphisms and four novel sequence changes were identified. Polymorphisms at nucleotide 258 (G --> A, Thr --> Thr) and 602 (T --> C, Leu --> Pro) were identified in eight and one specimen(s), respectively. Analysis of noncancerous DNA confirmed the presence of the polymorphisms in the germ-line. Four possible mutations were identified at nucleotides 24 (T --> G, Cys --> Trp), 380 (G --> A, Arg --> Glu), 776 (G --> T, Arg --> Leu), and 876 (C --> T, Leu --> Leu). Three were in xenografts or cell lines. Because normal DNA was not available, these could represent rare polymorphisms. The sole mutation in a clinical specimen, at nucleotide 876, did not result in an amino acid change.
Conclusion: Our data suggest that mutational inactivation ETV6 may occur in prostate carcinoma. The functional significance of these potential inactivating mutations remains to be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.10112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!