A new capillary electrophoresis (CE) method was developed for the rapid, simple and selective determination of thiosulfate, sulfide and sulfite species. The proposed method is based on the in-capillary derivatization of separated sulfur anions by mixing their zones with the iodine zone during the electrophoretic migration and direct UV detection of iodide formed. The optimal conditions for the separation and derivatization reaction were established by varying electrolyte pH, electrolyte counter-ion, concentration of iodine, and applied voltage. The optimized separations were carried out in 20 mmol/L Tris-chloride electrolyte (pH 8.5) using direct UV detection at 214 nm. All three sulfur species were well resolved in less than 4 min. The method gives repeatability comparable or even better than this obtained for sulfur anions using standard CE technique. The proposed CE system was applied to the monitoring of sulfur anions in spent fixing solutions during the electrolytic oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1522-2683(200208)23:15<2439::AID-ELPS2439>3.0.CO;2-ZDOI Listing

Publication Analysis

Top Keywords

sulfur anions
12
determination thiosulfate
8
thiosulfate sulfide
8
sulfide sulfite
8
in-capillary derivatization
8
direct detection
8
capillary electrophoretic
4
electrophoretic determination
4
sulfite in-capillary
4
derivatization iodine
4

Similar Publications

This study investigated the suitability of readily available and naturally occurring sources of microorganisms (inoculum) to use for the cultivation of sulphate-reducing bacteria (SRB) for acid mine drainage (AMD) remediation. The selected inocula included AMD water (AMD), mud (MUD) and reed-bed mud (RM) from the AMD surrounds, mealworms (MW), cow dung (CD) and raw sewage sludge (RS). The suitability of the different inoculum sources was evaluated by comparing the SO reduction and sulfide (S) production rates at three different pHs.

View Article and Find Full Text PDF

The complexes - (: = BuPrPSe, = Pd, = Cl; : = Bu PrPSe, = Pd, = Cl; : = Bu PrPSe, = Pd, = Br; : = Bu PrPS, = Pd, = Br; : = Bu PrPS, = Pt, = Cl) {systematic names: (-butyl-diiso-propyl-phosphine selenide-κ)di-chlorido-palladium(II), [PdCl(CHPSe)] (), (di--butyl-iso-propyl-phosphine selenide-κ)di-chloridopalladium(II), [PdCl(CHPSe)] (), di-bromido-(di--butyl-iso-propyl-phosphine selenide-κ)palladium(II), [PdBr(CHPSe)] (), di-bromido-(di--butyl-iso-propyl-phosphine sulfide-κ)palladium(II), [PdBr(CHPS)] (), di-chlorido-(di--butyl-iso-propyl-phosphine sulfide-κ)palladium(II), [PdCl(CHPS)] ()} all display a configuration with square-planar geometry at the metal atom. Compounds and are isotypic. The mol-ecules of and display crystallographic inversion symmetry; compound involves two independent mol-ecules, each with inversion symmetry but with differing orientations of the tri-alkyl-phosphane groups.

View Article and Find Full Text PDF

A novel thermophilic (optimum growth temperature ~ 60 °C) anaerobic Gram-negative bacterium, designated strain V6Fe1T, was isolated from sediments heated by the hydrothermal circulation of the Aeolian Islands (Vulcano, Italy) on the seafloor. Strain V6Fe1T belongs to the recently described family Deferrivibrionaceae in the phylum Deferribacterota. It grows chemoorganotrophically by fermentation of proteinaceous substrates and organic acids or by respiration of organic compounds using fumarate, nitrate, Fe(III), S°, and Mn(IV) as electron acceptors.

View Article and Find Full Text PDF

Palladium-gold bimetallic nanoparticles stabilized by daptomycin for sensitive colorimetric detection of sulfide ions.

Anal Chim Acta

April 2025

State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China. Electronic address:

Background: Sulfide ion is an important form of sulfur element, which is widely present in nature and has wide applications in industrial production and medicine. However, excessive sulfur ions may cause water acidification, harm aquatic organisms and destroy the balance of the ecological environment. In addition, long-term exposure to polluted water also poses a threat to human health, such as respiratory diseases or central nervous system symptoms.

View Article and Find Full Text PDF

Growth behavior of heavy metal sulfide particles: A comparison between gas-liquid and liquid-liquid sulfidation.

J Environ Sci (China)

August 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China.

Sulfide precipitation is an effective method for treating acidic heavy metal wastewater. However, the process often generates tiny particles with poor settling performance. The factors and mechanisms influencing particle size and settling performance remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!