P-glycoprotein (P-gp), a multidrug resistance (MDR) protein encoded by the MDR1 gene in humans, is responsible for the efflux of structurally diverse drugs. Previous studies in our laboratory have shown that excipients such as poly(ethylene)glycol (PEG)-300, Cremophor EL, and Tween 80 inhibit P-gp activity in Caco-2 cell monolayers. The objective of this study was to determine the effects of these excipients in an MDR1- transfected Madin Darby Canine Kidney (MDR1-MDCK) cell line and to compare the results with those obtained from Caco-2 cells. The results presented herein show that PEG-300 (20%, v/v) causes almost complete inhibition of P-gp activity in both Caco-2 and MDR1-MDCK cell monolayers, whereas Cremophor EL (0.1%, w/v) and Tween 80 (0.05%, w/v) only partially inhibit P-gp activity in Caco-2 cells. Cremophor EL (0.1%, w/v) and Tween 80 (0.05%, w/v) were inactive as P-gp inhibitors in MDR1-MDCK cell monolayers. This inability of Tween 80 and Cremphor EL to inhibit P-gp activity in MDR1-MDCK cells may be related to differences in the interactions of the surfactants with these different cell membranes. PEG-induced changes in P-gp activity are probably related to changes in the fluidity of the polar head group regions of cell membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.10176DOI Listing

Publication Analysis

Top Keywords

p-gp activity
20
inhibit p-gp
12
activity caco-2
12
cell monolayers
12
mdr1-mdck cell
12
caco-2 cells
8
cremophor 01%
8
01% w/v
8
w/v tween
8
tween 005%
8

Similar Publications

Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation.

Front Pharmacol

January 2025

Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China.

Purpose: Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated.

View Article and Find Full Text PDF

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Study on the absorption characteristics of euscaphic acid and tiliroside in fruits of Retz.

PeerJ

January 2025

Chinese University of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.

The fruits of Retz. (FRL) have a long history of medicinal use, known for their rich composition of flavonoids, polyphenols, amino acids, sugars, and other bioactive compounds. FRL exhibits pharmacological effects such as antioxidant, antiviral, antibacterial, and antitumor activities, making it a valuable resource with significant development potential in both the food and pharmaceutical industries.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to investigate the effect of intestinal dysbiosis on the bioavailability of voriconazole and to explore any underlying mechanisms.

Method: Sprague-Dawley rats were randomly divided into two groups: a normal control group and a ceftriaxone-associated dysbiotic group. The composition of the intestinal flora was examined using 16S rRNA sequencing analysis.

View Article and Find Full Text PDF

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!