We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajpa.10112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!