Objective: To study the chondroprotective effect of constitutively expressed TSG-6 protein (tumor necrosis factor alpha-induced protein 6; Tnfip6) in cartilage, using antigen-induced arthritis (AIA) in mice.
Methods: Transgenic mice constitutively expressing TSG-6 protein in cartilage were generated. Cartilage-specific constitutive expression of TSG-6 protein was confirmed by in situ hybridization, Western blot analysis, and immunohistochemistry. Control and transgenic mice were immunized with methylated bovine serum albumin (mBSA), and arthritis was induced by the intraarticular injection of mBSA. Mice were monitored up to day 35 after the challenge, and knee joint sections were examined for loss of cartilage proteoglycan (aggrecan) using Safranin O staining and antibodies to neoepitopes generated by various metalloproteinases (MPs). The loss of aggrecan in Safranin O-stained sections was quantified by morphometric methods.
Results: Tsg6/tnfip6 transgenic mice constitutively expressed tsg6/tnfip6 messenger RNA and corresponding TSG-6 protein in cartilage from embryonic life through adulthood, without any phenotypic abnormalities. These mice were used for AIA studies. Intraarticular injection of mBSA uniformly induced severe inflammation both in control (wild-type and an irrelevant transgenic line) mice and in tsg6/tnfip6 transgenic mice. In contrast to the mBSA-injected knee joints of control animals that were heavily damaged from day 5, the cartilage of transgenic mice that constitutively expressed TSG-6 protein remained intact for at least 1 week, and this was followed by a relatively reduced loss of aggrecan. Concomitant with the loss of aggrecan, MP-generated neoepitopes accumulated in unprotected joints. By day 35, the proteoglycan content returned to nearly normal levels in tsg6/tnfip6 transgenic mice, whereas it remained low in MP-damaged knee cartilage of control mice.
Conclusion: TSG-6 protein is known to form a complex with inter-alpha-inhibitor (IalphaI), a potent serine protease inhibitor, which may be immobilized via the hyaluronan (HA)-binding domain of TSG-6 protein in the HA-rich extracellular matrix of cartilage. Thus, the local accumulation of TSG-6 protein and TSG-6 protein-bound IalphaI in tsg6/tnfip6 transgenic mice may inhibit serine proteases and subsequent activation of MPs. It is suggested that this mechanism might protect cartilage from extensive degradation even in the presence of acute inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.10555 | DOI Listing |
Matrix Biol
January 2025
Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:
Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China;
Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.
Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.
iScience
December 2024
Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia.
mSystems
November 2024
Department of Pediatrics, Critical Care, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Arkansas, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!