Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All these different mutations call for a critical role of the PRR in mediating conformational changes of the Env glycoprotein during fusion activation. Our results suggest a model of MLV Env fusion activation in which unlocking of the fusion-inhibitory conformation is initiated by receptor binding of the viral RBD, which, upon disruption of the PRR, allows the NTR domain to promote further events in Env fusion activation. This involves a second type of interaction, in cis or in trans, between the receptor-activated RBD and a median segment of the freed C-terminal domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136517 | PMC |
http://dx.doi.org/10.1128/jvi.76.19.9673-9685.2002 | DOI Listing |
PLoS One
January 2025
Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.
View Article and Find Full Text PDFClin Cancer Res
January 2025
United States Food and Drug Administration, Silver Spring, Maryland, United States.
On April 23, 2024, FDA granted accelerated approval to tovorafenib, a type II RAF kinase inhibitor, for the treatment of patients 6 months of age and older with relapsed or refractory pediatric low-grade glioma (pLGG) harboring a BRAF fusion or rearrangement, or BRAF V600 mutation. Efficacy was evaluated in FIREFLY-1 (NCT04775485), a single-arm, open-label, multicenter trial that enrolled patients 6 months to 25 years of age with relapsed or refractory pLGG with an activating BRAF alteration who had received prior systemic therapy. The major efficacy outcome measure was radiologic overall response rate (ORR), defined as the proportion of patients with complete response, partial response, or minor response as determined by blinded independent central review using Response Assessment in Pediatric Neuro-Oncology (RAPNO) criteria.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.
Cell-free in vitro assays offer several advantages for elucidating molecular mechanisms underlying various biological processes. Here, we describe a simple and quantitative in vitro assay using isolated yeast microsomes to measure homotypic ER membrane fusion. In this assay, membrane fusion between ER microsomes is monitored by reconstitution of luciferase activity from split luciferase fragments.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.
The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Estrella Mountain Community College, Phoenix, AZ, USA.
Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!