Beta 3-adrenoceptor in rat aorta: molecular and biochemical characterization and signalling pathway.

Br J Pharmacol

Laboratoire de Physiopathologie et de Pharmacologie Cellulaires et Moléculaires, INSERM U533, Hôtel-Dieu, Nantes, France.

Published: September 2002

1. We have previously demonstrated that beta(3)-adrenoceptor (beta(3)-AR) stimulation induces endothelium-dependent vasorelaxation in rat aorta through the activation of an endothelial NO synthase associated with an increase in intracellular cGMP. The aim of the present study was to localise beta(3)-AR to confirm our functional study and to complete the signalling pathway of beta(3)-AR in rat aorta. 2. By RT-PCR, we have detected beta(3)-AR transcripts both in aorta and in freshly isolated endothelial cells. The absence of markers for adipsin or hormone-sensitive lipase in endothelial cells excluded the presence of beta(3)-AR from adipocytes. The localization of beta(3)-AR in aortic endothelial cells was confirmed by immunohistochemistry using a rat beta(3)-AR antibody. 3. To identify the G protein linked to beta(3)-AR, experiments were performed in rat pre-treated with PTX (10 microg kg(-1)), a G(i/0) protein inhibitor. The blockage of G(i/0) protein by PTX was confirmed by the reduction of vasorelaxation induced by UK 14304, a selective alpha(2)-AR agonist. The cumulative concentration-response curve for SR 58611A, a beta(3)-AR agonist, was not significantly modified on aorta rings from PTX pre-treated rats. 4. At the same level of contraction, the relaxations induced by 10 microM SR 58611A were significantly reduced in 30 mM-KCl pre-constricted rings (E(max)=16.7+/-8.4%, n=5), in comparison to phenylephrine (0.3 microM) pre-constricted rings (E(max)=49.11+/-11.0%, n=5, P<0.05). In addition, iberotoxin (0.1 microM), glibenclamide (1 microM) and 4-aminopyridine (1 mM), selective potassium channels blockers of K(Ca), K(ATP), and K(v) respectively, decreased the SR 58611A-mediated relaxation. 5. We conclude that beta(3)-AR is preferentially expressed in rat aortic endothelial cells. Beta(3)-AR-mediated aortic relaxation is independent of G(i/0) proteins stimulation, but results from the activation of several potassium channels, K(Ca), K(ATP), and K(v).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573490PMC
http://dx.doi.org/10.1038/sj.bjp.0704867DOI Listing

Publication Analysis

Top Keywords

rat aorta
12
endothelial cells
12
beta3-ar
9
signalling pathway
8
gi/0 protein
8
pre-constricted rings
8
rat
5
aorta
5
beta 3-adrenoceptor
4
3-adrenoceptor rat
4

Similar Publications

Background: In patients with diabetes mellitus (DM), vascular endothelial dysfunction (VED) is the main reason for impaired life expectancy. Melatonin (MEL) demonstrates wide-ranging effects across various organs and exhibits pleiotropic characteristics. The current study aims to investigate the modulatory roles of MEL vascular response to angiotensin II (Ang II) and its receptors including angiotensin type 1 receptor (AT-1 R) and angiotensin type 2 receptor (AT-2 R) in isolated thoracic aorta of non-diabetes (non-DM) and diabetes (DM) rats.

View Article and Find Full Text PDF

Transcriptional profile of the rat cardiovascular system at single-cell resolution.

Cell Rep

December 2024

Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:

We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type.

View Article and Find Full Text PDF

Decreased blood pressure with acute administration of quercetin in L-NAME-induced hypertensive rats.

Basic Clin Pharmacol Toxicol

January 2025

Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Quercetin is known to reduce blood pressure (BP); however, its acute effects are unclear. We investigated the acute effects of quercetin on BP, aortic mechanical properties and vascular reactivity in female Sprague-Dawley (SD) rats. Hypertension was induced using L-NAME (40 mg/kg/day).

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) can cause blood pressure (BP) elevation in estrogen-deficient, post-menopausal women; however, the underlying mechanisms are not well understood. In this study, the aortic involvement and its underlying mechanisms that contribute to the BP elevation in estrogen-deficient, RA condition were identified. Ovariectomy was performed to create a state of estrogen deficiency and RA was then induced in ovariectomized rats by using incomplete Freund's adjuvant and immune-mediated collagen type-II.

View Article and Find Full Text PDF

Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!