Proteasome inhibitors induce apoptosis in growth hormone- and prolactin-secreting rat pituitary tumor cells.

J Endocrinol

Cedars-Sinai Research Institute, UCLA School of Medicine, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.

Published: September 2002

Proteasome inhibitors induce apoptosis in some malignant cells, and we show here that these inhibitors induce apoptosis in rat pituitary MMQ and GH3 tumor cells but not in normal pituitary cells. Three proteasome inhibitors, PSI, MG-132, and lactacystin, but not the calpain inhibitor, ALLM, dose- and time-dependently caused apoptosis in these cells, and 10 microM PSI caused apoptosis in 70% of MMQ cells and in 25% of GH3 cells within 24 h. A lower PSI dose (10 nM) inhibited GH3 cell growth without causing significant apoptosis or affecting prolactin secretion. Primary rat pituitary cells were resistant to both PSI and MG-132 and did not undergo apoptosis. In MMQ cells, DNA synthesis was slowed (approximately 30%) after 6 h of 10 microM PSI treatment and a partial cell cycle block at G2/M was evident after 8 h. Colorimetric caspase substrate assay and Western blotting of caspase substrates showed that caspases 2 and 3 are activated by PSI while caspases 6 and 8 remained inactive. A broad-range caspase inhibitor, caspase inhibitor III, prevented apoptosis induced by PSI. The results show that proteasome inhibitors induce apoptosis in rat pituitary tumor cells by specific caspase activation. This novel group of drugs may potentially be used in treatment of aggressive pituitary tumors, especially as their action appears relative for tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1677/joe.0.1740379DOI Listing

Publication Analysis

Top Keywords

proteasome inhibitors
16
inhibitors induce
16
induce apoptosis
16
rat pituitary
16
tumor cells
16
cells
11
apoptosis
9
pituitary tumor
8
apoptosis rat
8
pituitary cells
8

Similar Publications

Proteasome Inhibitors Induce Apoptosis in Ex Vivo Cells of T-Cell Prolymphocytic Leukemia.

Int J Mol Sci

December 2024

Hematology Section, Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, 35122 Padova, Italy.

Finding an effective treatment for T-PLL patients remains a significant challenge. Alemtuzumab, currently the gold standard, is insufficient in managing the aggressiveness of the disease in the long term. Consequently, numerous efforts are underway to address this unmet clinical need.

View Article and Find Full Text PDF

Loss of function screens using shRNA (short hairpin RNA) and CRISPR (clustered regularly interspaced short palindromic repeats) are routinely used to identify genes that modulate responses of tumor cells to anti-cancer drugs. Here, by integrating GSEA (Gene Set Enrichment Analysis) and CMAP (Connectivity Map) analyses of multiple published shRNA screens, we identified a core set of pathways that affect responses to multiple drugs with diverse mechanisms of action. This suggests that these pathways represent "weak points" or "Achilles heels", whose mild disturbance should make cancer cells vulnerable to a variety of treatments.

View Article and Find Full Text PDF

Pharmacological treatment of diabetes mellitus-induced erectile dysfunction (DMED) has become increasingly challenging due to the limited efficacy of phosphodiesterase type 5 inhibitors (PDE5i). As the global prevalence of DM continues, there is a critical need for novel therapeutic strategies to address DMED. In our previous studies, we found that Glutathione peroxidase 4 (GPX4), a ferroptosis inhibitor, can ameliorate DMED in diabetic rats.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is an exceedingly common and profoundly impactful malignancy of the digestive system, posing a grave threat to human health. Endoplasmic reticulum stress (ERS) is an intracellular biological reaction that mobilizes the unfolded protein response (UPR) to tackling dysregulation in protein homeostasis. This process subtly modulates the cell to either restore normal cellular function or steer it towards apoptosis.

View Article and Find Full Text PDF

Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression.

Genes Dis

March 2025

Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.

The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!