RNase E contains a large non-catalytic region that binds RNA and the protein components of the Escherichia coli RNA degradosome. The rne gene was replaced with alleles encoding deletions in the non-catalytic part of RNase E. All the proteins are stable in vivo. RNase E activity was tested using a P(T7)-lacZ reporter gene, the message of which is particularly sensitive to degradation because translation is uncoupled from transcription. The non-catalytic region has positive and negative effectors of mRNA degradation. Disrupting RhlB and enolase binding resulted in hypoactivity, whereas disrupting PNPase binding resulted in hyperactivity. Expression of the mutant proteins in vivo anticorrelates with activity showing that autoregulation compensates for defective function. There is no simple correlation between RNA binding and activity in vivo. An allele (rne131), expressing the catalytic domain alone, was put under P(lac) control. In contrast to rne+,low expression of rne131 severely affects growth. Even with autoregulation, all the mutants are less fit when grown in competition with wild type. Although the catalytic domain of RNase E is sufficient for viability, our work demonstrates that elements in the non-catalytic part are necessary for normal activity in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.2002.03104.x | DOI Listing |
Regen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Human Pathology, University of Nairobi, Nairobi, Nairobi County, Kenya.
Background: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening.
View Article and Find Full Text PDFLancet Reg Health Eur
March 2025
Department of Biostatistics, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
Background: It is unclear whether changes in antimicrobial resistance (AMR) in primary care influence AMR in hospital settings. Therefore, we investigated the dynamic association of AMR between primary care and hospitals.
Methods: We studied resistance percentages of and isolates to co-amoxiclav, ciprofloxacin, fosfomycin, nitrofurantoin and trimethoprim submitted by primary care, hospital outpatient and hospital inpatient settings to the Dutch National AMR surveillance network (ISIS-AR) from 2008 to 2020.
Cureus
December 2024
Medicine, Army Medical College, Rawalpindi, PAK.
Objective This cross-sectional study explored the interplay between breastfeeding patterns, gut microbiota composition, anemia, and cardiovascular risk in lactating mothers. The study examined how these factors contribute to postpartum maternal and infant health outcomes. Methods Forty-five lactating mothers, with a mean age of 32.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!