Codon usages are known to vary among vertebrates chiefly due to variations in isochore structure. Under the assumption that marked differences exist in isochore structure between warm-blooded and cold-blooded animals, the variations among vertebrates were previously attributed to an adaptation to homeothermy. However, based on data from a turtle species and a crocodile (Archosauromorpha), it was recently proposed that the common ancestors of mammals, birds and extent reptiles already had the "warm-blooded" isochore structure. We determined the nucleotide sequences of alpha-globin genes from two species of heterotherms, cuckoo (Cuculus canorus) and bat (Pipistrellus abramus), and three species of snakes (Lepidosauromorpha), Naja kaouthia from a tropical terrestrial habitat, Elaphe climacophora from a temperate terrestrial habitat, and Hydrophis melanocephalus from a tropical marine habitat. Our purposes were to assess the influence of differential body temperature patterns on codon usage and GC content at the third position of a codon (GC3), and to test the hypothesis concerning the phylogenetic position at which GC contents had increased in vertebrates. The results of principal component analysis (PCA) using the present data and data for other taxa from GenBank indicate that the primary difference in codon usage in globin genes among amniotes and other vertebrates lies in GC3. The codon usages (and GC3) in alpha-globin genes from two heterotherms and three snakes are similar to those in alpha-globin genes from warm-blooded vertebrates. These results refute the influence of body temperature pattern upon codon usages (and GC3) in alpha-globin genes, and support the hypothesis that the increase in GC content in the genome occurred in the common ancestor of amniotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1266/ggs.77.197 | DOI Listing |
Zhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Precision Medical Lab Center, People's Hospital of Yangjiang, Yangjiang, Guangdong 529500, China.
Objective: To analyze the correlation between variants in the start codon of the α-globin gene and phenotypes of thalassemia, so as to provide a basis for the diagnosis and prevention of α-thalassemia.
Methods: A retrospective study was conducted on 7 patients diagnosed by Yangjiang People's Hospital and Guangzhou Hybribio Co. Ltd.
Acta Biochim Biophys Sin (Shanghai)
January 2025
Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Despite the well-documented mutation spectra of β-thalassemia, the genetic variants and haplotypes of globin gene clusters modulating its clinical heterogeneity remain incompletely illustrated. Here, a targeted long-read sequencing (T-LRS) is demonstrated to capture 20 genes/loci in 1,020 β-thalassemia patients. This panel permits not only identification of thalassemia mutations at 100% of sensitivity and specificity, but also detection of rare structural variants (SVs) and single nucleotide variants (SNVs) in modifier genes/loci.
View Article and Find Full Text PDFMetabolites
December 2024
IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.
Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!