The Drosophila ebony mutation (Bridges and Morgan, [1923] Publs Carnegie Inst Wash 327:50) reveals a pleiotropic phenotype with cuticular and behavioral defects. To understand Ebony function in the nervous system, particularly in transmission of the visual signal, it is essential to know the cell type and temporal characteristics of its expression throughout development. Therefore, we raised an antiserum against an Ebony peptide to detect the protein in whole-mount and slice preparations of Drosophila. Attention was focused on ebony expression in the adult optic neuropiles of the fly. Colocalization of Ebony with neuronal or glial cell markers in frozen sections showed non-neuronal expression of ebony in the lamina and medulla neuropiles. Furthermore, colocalization with glial cell markers demonstrated glial expression of ebony in epithelial glia of the lamina and neuropile glia of the distal medulla. This finding was confirmed for the lamina epithelial glia by electron microscopic examination of immunolabeling by using the diaminobenzidine method. These glia have in common that they match the two sites of histamine release from the compound eye's photoreceptors. Possible ways in which the biochemical activity of Ebony might function with respect to histamine release are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.10360DOI Listing

Publication Analysis

Top Keywords

ebony
9
nervous system
8
ebony function
8
glial cell
8
cell markers
8
expression ebony
8
epithelial glia
8
histamine release
8
expression
5
ebony protein
4

Similar Publications

Triterpenoids are known for their promising biological activities, and there is a growing focus on green extraction methods for these compounds. In this study, ultrasound-assisted deep eutectic solvents were employed to extract triterpenoids from persimmon leaves, with choline chloride-lactic acid identified as an effective green solvent. The extraction conditions were carefully optimized using response surface methodology, resulting in an extraction efficiency of 12.

View Article and Find Full Text PDF

Effect of selected Indonesian plants on Giardia intestinalis in an experimental in vitro model.

BMC Complement Med Ther

January 2025

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.

Background: This study evaluated in vitro antigiardial activity in four Indonesian plants (Archidendron fagifolium, Diospyros sumatrana, Piper betle and Shorea sumatrana) extracted in methanol, methanol-tetrahydrofuran, and water. These plants exhibiting promising anti-parasitic activity were selected on the basis of collected behavioral data and their ability to decrease parasite load in Sumatran orangutans. Extracts of Arabidopsis thaliana, a plant routinely used as a laboratory model in research, were used as a negative control.

View Article and Find Full Text PDF

Persimmon (Diospyros kaki L.) leaves are a traditional medicinal herb used for treating many infectious and inflammatory-related conditions, including wound healing. To validate its traditional use, our study evaluates the acute toxicity and wound-healing effects of methanolic extracts of Persimmon (Diospyros kaki L.

View Article and Find Full Text PDF

Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .

View Article and Find Full Text PDF

Background: Persimmon (Diospyros kaki L.) belongs to the Ebenaceae family, which includes six genera and about 400 species. This study evaluated the genetic diversity of 100 persimmon accessions from Hatay province, Türkiye using 42 morphological and pomological traits, along with inter simple sequence repeat (ISSR) markers and multivariate analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!