The catalytic function of Mycobacterium tuberculosis catalase-peroxidase (KatG) and its role in activation of the anti-tuberculosis antibiotic isoniazid were investigated using rapid freeze-quench electron paramagnetic resonance (RFQ-EPR) experiments. The reaction of KatG with peroxyacetic acid was followed as a function of time using x-band EPR at 77 K. A doublet EPR signal appears within 6.4 ms after mixing and at time points through hundreds of milliseconds. Thereafter, a singlet signal develops and finally predominates after 1 s, with a total yield of radical approximately 0.5 spin/heme. Simulation of the spectra provided EPR parameters consistent with those for tyrosyl radicals. Changes in the hyperfine splitting and/or line width in spectra for l-3,3-[2H2]tyrosine-labeled, but not l-2,4,5,6,7-[2H5]tryptophan-labeled KatG confirmed this assignment. The initial rate of radical formation was unchanged using a 3-fold or 10-fold excess of peroxyacetic acid, consistent with a rate-determining step involving an intermediate. Although Compound I is likely to be the precursor of tyrosyl radical in KatG, neither its EPR signal nor its reduction to Compound II during formation of the radical(s) could be observed. The tyrosyl radical doublet signal was rapidly quenched by addition of isoniazid and benzoic hydrazide, but not by iproniazid, which binds poorly to KatG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M207916200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!