A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. | LitMetric

S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in polyamine biosynthesis. We show that the plant AdoMetDC activity is subject to post-transcriptional control by polyamines. A highly conserved small upstream open reading frame (uORF) in the AdoMetDC mRNA 5' leader is responsible for translational repression of a downstream beta-glucuronidase reporter cistron in transgenic tobacco plants. Elimination of the small uORF from an AdoMetDC cDNA led to increased relative translational efficiency of the AdoMetDC proenzyme in transgenic plants. The resulting increased activity of AdoMetDC caused disruption to polyamine levels with depletion of putrescine, reduction of spermine levels, and a more than 400-fold increase in the level of decarboxylated S-adenosylmethionine. These changes were associated with severe growth and developmental defects. The high level of decarboxylated S-adenosylmethionine was not associated with any change in 5'-methylcytosine content in genomic DNA and S-adenosylmethionine levels were more or less normal, indicating a highly efficient system for maintenance of S-adenosylmethionine levels in plants. This work demonstrates that uORF-mediated translational control of AdoMetDC is essential for polyamine homeostasis and for normal growth and development.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M206161200DOI Listing

Publication Analysis

Top Keywords

upstream open
8
open reading
8
translational control
8
s-adenosylmethionine decarboxylase
8
uorf adometdc
8
level decarboxylated
8
decarboxylated s-adenosylmethionine
8
s-adenosylmethionine levels
8
adometdc
7
s-adenosylmethionine
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!