Oxidative stress is implicated in the pathogenesis of neurodegenerative disorders and brain ischemia, and hydrogen peroxide (H(2)O(2)) plays a central role in the stress. In this study, we have examined the kinetics of H(2)O(2) elimination by PC12 cells as a neuronal model in connection with the enzyme activities supporting the reaction. Similarly to other cell lines previously studied, H(2)O(2) removal kinetics could be divided into two reactions: one apparently following the Michaelis-Menten kinetics (GSH-dependent reaction) and the other following the first-order kinetics (mainly catalyzed by catalase). Based on the enzyme activities in the cell homogenate, it was inferred that glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the GSH- and NADPH-dependent H(2)O(2) elimination by PC12 cells. This is in contrast with fibroblasts and endothelial cells previously examined, in which glutathione reductase (GR) is rate-limiting in the reaction sequence. Treatment of PC12 cells with nerve growth factor increased G6PD activity in the cell homogenate and H(2)O(2) removal activity of the whole cells, with a concomitant increase in the resistance against H(2)O(2) toxicity. These results suggest the importance of G6PD in the antioxidant function of brain and pathogenesis of the oxidative stress-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-4165(02)00282-9 | DOI Listing |
Talanta
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:
The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.
View Article and Find Full Text PDFActa Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFBackground: Fibroblast growth factor 21 (FGF21) and Methyltransferase-like 14 (METTL14) have been identified to be involved in spinal cord injury (SCI). However, whether FGF21 functioned in SCI via METTL14-induced N6-methyladenosine (m6A) modification remains unclear.
Materials And Methods: PC12 cells were exposed to lipopolysaccharide (LPS) in vitro.
Int J Biol Macromol
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.
View Article and Find Full Text PDFBackground: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!