In experimental animals and humans, the concentration of serum mevalonate (MVA), a direct product of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is considered to reflect the activity of whole-body sterol synthesis. The relationship between the concentration of serum MVA and the activity of sterol synthesis in tissues, however, has not been fully clarified. In the present study, we examined MVA metabolism by using pravastatin, a liver-selective inhibitor of HMG-CoA reductase, and common marmosets, a good model animal for studying lipid metabolism. In the time course study, the maximal reduction in the concentration of serum MVA was observed 2 h after a single oral administration of 30 mg/kg pravastatin to common marmosets. We, therefore, examined the relationship between the concentrations of serum and hepatic MVA, and sterol synthesis in some tissues at this time point. Sterol synthesis was determined ex vivo in tissue slices by measuring the incorporation of [14C]acetate into digitonin-precipitable [14C]sterols. Pravastatin at 0.03-30 mg/kg reduced dose-dependently the activity of hepatic sterol synthesis, whereas no significant reduction of sterol synthesis was observed in other tissues such as intestine, kidney, testis and spleen, even with the highest dose (30 mg/kg). The liver-specific inhibition of sterol synthesis caused parallel reductions in the concentrations of both serum and liver MVA. In addition, there were good correlations between the concentration of either serum or hepatic MVA and the activity of hepatic sterol synthesis. These data indicate that the major origin of serum MVA is the liver, and that the concentration of serum MVA reflects the concentration of hepatic MVA and the activity of hepatic sterol synthesis 2 h after a single oral administration of pravastatin in common marmosets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!