Brucella melitensis is a facultative intracellular bacterial pathogen that causes brucellosis, a zoonotic disease primarily infecting sheep and goats, characterized by undulant fever, arthritic pain and other neurological disorders in humans. A comprehensive proteomic study of strain 16M was conducted to identify and characterize the proteins expressed in laboratory-grown culture. Using overlapping narrow range immobilized pH gradient strips for two-dimensional gel electrophoresis, 883 protein spots were detected between pH 3.5 and 11. The average isoelectric point and molecular weight values of the detected spots were 5.22 and 46.5 kDa, respectively. Of the 883 observed protein spots, 440 have been identified by matrix-assisted laser desorption/ionization-mass spectrometry. These proteins represent 187 discrete open reading frames (ORFs) or 6% of the predicted 3197 ORFs contained in the genome. The corresponding ORFs of the identified proteins are distributed evenly between each of the two circular B. melitensis chromosomes, indicating that both replicons are functionally active. The presented proteome map lists those protein spots identified to date in this study. This map may serve as a baseline reference for future proteomic studies aimed at the definition of biochemical pathways associated with stress responses, host specificity, pathogenicity and virulence. It will also assist in characterization of global proteomic effects in gene-knockout mutants. Ultimately, it may aid in our overall understanding of the cell biology of B. melitensis, an important bacterial pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1615-9861(200208)2:8<1047::AID-PROT1047>3.0.CO;2-8DOI Listing

Publication Analysis

Top Keywords

protein spots
12
brucella melitensis
8
proteins expressed
8
expressed laboratory-grown
8
laboratory-grown culture
8
bacterial pathogen
8
global analysis
4
analysis brucella
4
melitensis
4
melitensis proteome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!