A key event in metamorphosis of anuran amphibians is tail resorption. This composite structure includes epidermal cells, spinal cord, muscle fibres and connective tissue. It is unclear how resorption proceeds and to what extent the signals for the death process are transmitted between cells. We determined the kinetics of metamorphosis, apoptosis, and tail regression in the diploid anuran, Xenopus tropicalis, a species more suited to genetic analysis than the pseudotetraploid, Xenopus laevis. Metamorphosis was found to proceed at a regular and predictable rate in X. tropicalis but not in X. laevis. Caspase 3 activity and mRNA levels were correlated with TdT-mediated dUTP nick end-labeling (TUNEL) signalling and most markedly increased in tail muscle and spinal cord. It has been proposed that muscles die as a result of loss of connectivity with the surrounding matrix. To test this hypothesis, we used direct DNA injection in trunk and tail muscle to overexpress Xenopus Bcl-X(L) (xR11), an anti-apoptotic gene, along with a marker gene (luciferase or GFP). xR11 significantly inhibited the cell death process in both trunk and tail muscle. This protection was functional even up to stage 64 on completion of tail regression. We conclude that (1) somatic gene transfer can be applied to analyse cell fate in X. tropicalis, and (2) that muscle death can be abrogated despite extracellular matrix loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.10117 | DOI Listing |
IUBMB Life
January 2025
Cheerland Watson Precision Medicine Ltd, Shenzhen, China.
Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.
View Article and Find Full Text PDFFood Chem
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
The present study was performed to investigate the digestive profiles of snakeheads' belly muscles (BM), tail muscles (TM) dorsal muscles (DM), and eye muscles (EM), with further explorations of relevant factors. Kinetic models were adopted to describe the digestion process with crucial parameters. BM showed the highest digestibility and digestive rate, followed by DM, TM, and EM.
View Article and Find Full Text PDFAnat Rec (Hoboken)
December 2024
Biology Department, Northland Pioneer College, Holbrook, Arizona, USA.
Nothronychus graffami was a large therizinosaur represented by a single well-preserved individual from the Turonian Tropic Shale of southern Utah. It is characterized by an enlarged abdomen, small tail, and an extensively pneumatized axial skeleton, and is frequently regarded as herbivorous. Given the overall tail reduction and the development of a wide fused synsacrum with widely spaced acetabulae, it is reconstructed with an anteriorly rotated femur and a displaced resting ground reaction force anterior to the center of mass.
View Article and Find Full Text PDFJ Morphol
January 2025
Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
The skin of the Komodo dragon (Varanus komodoensis) is covered by a form of armour formed mainly of scales, which often co-occur with osteoderms. Scales are keratinized, non-mineralized structures in the uppermost layer of the epidermis that are in contact with each other to form a system in which individual scales are isolated from each other by a softer skin fold zone. In the Varanus, the surface of the scales is flat and smooth (thoracic limb, abdomen, and tail areas), domed and smooth (head area) or domed with conical ornamentation (dorsal surface, pelvic limb-dorsal surface areas).
View Article and Find Full Text PDFJ Feline Med Surg
December 2024
Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
Objectives: Window entrapment in cats can lead to reduced blood flow to the spinal cord, muscles and nerves, resulting in ischaemic neuromyelomyopathy. The severity and duration of entrapment greatly influence clinical and neurological outcomes, as well as prognosis. The aim of the present retrospective multicentric study (2005-2022) was to describe clinical, neurological and selected clinicopathological findings, as well as the outcome of cats trapped in bottom-hung windows, presented to both first-opinion and referral-only clinics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!