Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1521-3773(20020802)41:15<2755::AID-ANIE2755>3.0.CO;2-A | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Jilin Province Key Lab of Green Chemistry and Process, CHINA.
A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
Here, we report the enantioselective total syntheses of four diepoxy--kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
Harnessing chiral optical forces facilitates numerous applications in enantioselective sorting and sensing. To date, significant challenges persist in substantiating the holistic complex theorem of these forces as experimental demonstrations employ common light waves (e.g.
View Article and Find Full Text PDFChemistry
December 2024
Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary.
A concise, bioinspired, and enantioselective synthesis of (-)-hunterine A, an odd 6/7/6/6/5 pentacyclic natural product, is described. The key step in the synthesis of this complex structure is an interim-template directed 6-exo selective epoxide ring-opening reaction, which is interwoven with a hydrolysis step of the indolenine hemiaminal template to create the unusual 7-membered azepine bridge motif. Our work not only refines the previously proposed biogenetic pathway, but also reveals the possible stereochemical prerequisite of the unique skeletal rearrangement, which provides a vantage point for understanding how (-)-hunterine A is likely to be generated in nature.
View Article and Find Full Text PDFChemistry
December 2024
Department of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
We present a comprehensive account on the evolution of a synthetic platform for a subfamily of ent-pimaranes. For the most complex member, norflickinflimiod C, five distinct strategies relying on either cationic or radical polyene cyclizations to construct the requisite tricyclic carbon scaffold were explored. Insights from early and late stage oxidative and reductive dearomatization studies ultimately led to a mild, rhodium-catalyzed arene hydrogenation for the final synthetic route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!