TiO(2)-supported ruthenium-metal particles were derived from an anionic hexanuclear carbido carbonyl cluster [Ru(6)C(CO)(16)](2-) and compared with those prepared conventionally by impregnation of TiO(2) with a solution of RuCl(3) followed by reduction with H(2). The average sizes of the metal particles in both systems are similar, that is, 12 A for molecular cluster-derived particles and 15 A for those derived from the RuCl(3) precursor, although the size distribution is sharper in the former case. These supported particles efficiently promote the reduction of SO(2) with H(2) to give elemental sulfur. Their active form is ruthenium sulfide as confirmed by EXAFS and X-ray diffraction measurements. The nanoscale ruthenium sulfide particles, which originated from the cluster complex, have an amorphous character and show activity even at low temperature (463 K), whereas ruthenium sulfide formed from RuCl(3)-derived metal dispersion is a pyrite-type RuS(2) crystallite and needs a temperature above 513 K to effect the same catalysis. Amorphous ruthenium sulfide maintains its nano-sized scale (approximately 14 A) regardless of the reaction temperature, while RuS(2) crystallite aggregates to form larger nonuniform particles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3765(20020715)8:14<3260::AID-CHEM3260>3.0.CO;2-CDOI Listing

Publication Analysis

Top Keywords

ruthenium sulfide
20
amorphous ruthenium
8
cluster complex
8
reduction so2
8
particles derived
8
rus2 crystallite
8
particles
6
ruthenium
5
sulfide
5
nanoparticles amorphous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!