Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is shown that fluorescent dyes can be adsorbed selectively on gold nanoparticles which are immobilized on a glass substrate and that the fluorescence originating from the adsorbed dyes exhibits significantly less quenching when compared to dyes adsorbed on bulk gold. Self-assembled monolayers of lissamine sulfide molecules have been studied both on bulk gold and on glass surfaces bearing gold nanoparticles. Gold nanoparticles have been arranged in ordered, two-dimensional patterns, with periodicity in the microm range and used as substrate for the fluorescent dyes. Optical resolution of the fluorescence originating from the pattern has been achieved with laser-scanning confocal microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1521-3765(20020816)8:16<3808::AID-CHEM3808>3.0.CO;2-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!