The effects of two inhibitors of hepatic glucose production, AICAR (5-aminoimidazole-4-carboxamide riboside) and metformin, whose precise mechanisms of action are a matter of some controversy, have been investigated in isolated rat hepatocytes by application of a novel NMR-based method whereby effects on metabolic flow from the two glucose-producing pathways, glycogenolysis and gluconeogenesis, and also lactate production, can be studied simultaneously. Hepatocytes were pre-incubated for 24 h with 15 mM 1-(13)C-glucose to load the cells with labeled glycogen, which under subsequent glycogenolytic conditions would yield predominantly 1-(13)C glucose and 3-(13)C-lactate, followed (after washing) by incubation in media with 2-(13)C-glycerol, which under subsequent gluconeogenic conditions would yield 2,5-(13)C-glucose, or if metabolized to lactate, 2-(13)C-lactate. Glucose production was then stimulated by glucagon for 3 h in the absence or presence of the inhibitors and then incubation media were analyzed by (13)C-HSQC (heteronuclear single quantum coherence)-filtered (1)H NMR spectra. The results show that metformin only inhibits glucose production by inhibition of gluconeogenesis, but also that it increases lactate production from both glycogenolysis and from glycerol, whereas, and contrary to expectations, AICAR inhibits glucose production by inhibiting both gluconeogenesis and glycogenolysis, and also increases lactate production from glycerol. The data show that application of this methodology can be used to answer important questions about drug action on hepatic metabolism that are not readily accessible by alternative means.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.773 | DOI Listing |
FEBS J
January 2025
Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India.
Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.
View Article and Find Full Text PDFJ Diabetes Metab Disord
June 2025
Department of Physiology, Kampala International University, Western Campus, Ishaka, Uganda.
Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.
View Article and Find Full Text PDFThis study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.
View Article and Find Full Text PDFGlucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.
View Article and Find Full Text PDFUnlabelled: Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in , causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!