Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of gastrointestinal cancers. Recently, a similar protective effect has been demonstrated by the specific cyclo-oxygenase-2 (COX-2) inhibitors. However, the exact mechanism that accounts for the anti-proliferative effect of specific COX-2 inhibitors is still not fully understood, and it is still controversial whether these protective effects are predominantly mediated through the inhibition of COX-2 activity and prostaglandin synthesis. Identification of molecular targets regulated by COX-2 inhibitors could lead to a better understanding of their pro-apoptotic and anti-neoplastic activities. In the present study, we investigated the effect and the possible molecular target of a COX-2-specific inhibitor SC-236 on gastric cancer. We showed that SC-236 induced apoptosis in gastric cancer cells. However, this effect was not dependent on COX-2 inhibition. SC-236 down-regulated the protein expression and kinase activity of PKC-beta(1), increased the expression of PKCdelta and PKCeta, but did not alter the expression of other PKC isoforms in AGS cells. Moreover, exogenous prostaglandins or PGE(2) receptor antagonists could not reverse the inhibition effect on PKCbeta(1) by SC-236, which suggested that this effect occurred through a mechanism independent of cyclo-oxygenase activity and prostaglandin synthesis. Overexpression of PKCbeta(1) attenuated the apoptotic response of AGS cells to SC-236 and was associated with overexpression of p21(waf1/cip1). Inhibition of PKCbeta(1)-mediated overexpression of p21(waf1/cip1) partially reduced the anti-apoptotic effect of PKCbeta(1). The down-regulation of PKCbeta(1) provides an explanation for COX-independent apoptotic effects of specific COX-2 inhibitor in cultured gastric cancer cells. We also suggest that PKCbeta(1) act as survival mediator in gastric cancer, and its down-regulation by COX-2 inhibitor SC-236 may provide new target for future treatment of gastric cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1205778DOI Listing

Publication Analysis

Top Keywords

gastric cancer
20
inhibitor sc-236
12
cox-2 inhibitors
12
specific cox-2
8
activity prostaglandin
8
prostaglandin synthesis
8
cancer cells
8
ags cells
8
overexpression p21waf1/cip1
8
cox-2 inhibitor
8

Similar Publications

Background: A novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugate (ADC) GQ1001 was assessed in patients with previously treated HER2 positive advanced solid tumors in a global multi-center phase Ia dose escalation trial.

Methods: In this phase Ia trial, a modified 3 + 3 study design was adopted during dose escalation phase. Eligible patients were enrolled, and GQ1001 monotherapy was administered intravenously every 3 weeks.

View Article and Find Full Text PDF

Impact of pathological complete response on survival in gastric cancer after neoadjuvant chemotherapy: a propensity score matching analysis.

BMC Gastroenterol

January 2025

Department of General Surgery (Gastrointestinal Surgery, Unit 1), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, China.

Purpose: The survival benefits of neoadjuvant chemotherapy (NAC) for locally advanced gastric cancer (LAGC) patients are inconsistent. This study aims to investigate how different tumor regression grades (TRG) influence the survival gains associated with NAC treatment.

Methods: This study compared the treatment outcomes of patients who underwent CSC (neoadjuvant chemotherapy - surgery - adjuvant chemotherapy) with those receiving traditional SC (surgery - adjuvant chemotherapy) treatment.

View Article and Find Full Text PDF

Anamorelin, a highly selective ghrelin receptor agonist, enhances appetite and increases lean body mass in patients with cancer cachexia. However, the predictors of its therapeutic effectiveness are uncertain. This study aimed to investigate the association between the Glasgow prognostic score (GPS), used for classifying the severity of cancer cachexia, the therapeutic effectiveness of anamorelin, and the feasibility of early treatment based on cancer types.

View Article and Find Full Text PDF

Due to considerable tumour heterogeneity, stomach adenocarcinoma (STAD) has a poor prognosis and varies in response to treatment, making it one of the main causes of cancer-related mortality globally. Recent data point to a significant role for metabolic reprogramming, namely dysregulated lactic acid metabolism, in the evolution of STAD and treatment resistance. This study used a series of artificial intelligence-related approaches to identify IGFBP7, a Schlafen family member, as a critical factor in determining the response to immunotherapy and lactic acid metabolism in STAD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!