A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative analysis of the structure of the human extraocular muscle pulley system. | LitMetric

Quantitative analysis of the structure of the human extraocular muscle pulley system.

Invest Ophthalmol Vis Sci

Department of Ophthalmology, University of California, Los Angeles, CA, USA.

Published: September 2002

Purpose: Extraocular muscle (EOM) paths are constrained by connective tissue pulleys serving as functional origins. The quantitative structural features of pulleys and their intercouplings and orbital suspensions remain undetermined. This study was designed to quantify the composition of EOM pulleys and suspensory tissues.

Methods: Five human orbits, ages 33 weeks gestation to 93 years, were imaged intact by magnetic resonance (MRI), serially sectioned at 10 micro m thickness, and stained for collagen, elastin, and smooth muscle (SM). With MRI used as a reference, digital images of sections were geometrically corrected for shrinkage and processing deformations, and normalized to standard normal adult globe diameter. EOM pulleys, interconnections, suspensory tissues, and entheses were quantitatively analyzed for collagen, elastin, and SM thickness and density.

Results: Rectus and inferior oblique pulleys had uniform structural features in all specimens, comprising a dense EOM encirclement by collagen 1 to 2 mm thick. Elastin distribution varied, but was greatest in the orbital suspension of the medial rectus pulley and in a band from it to the inferior rectus pulley. This region corresponded to maximum SM density. Structural features of pulleys, intercouplings, and entheses were similar among specimens. The major mechanical couplings to the osseous orbit were near the medial and lateral rectus pulleys.

Conclusions: Quantitative analysis of structure and composition of EOM pulleys and their suspensions is consistent with in vivo MRI observations showing discrete inflections in EOM paths that shift predictably with gaze. Focal SM distributions in the suspensions suggest distinct roles in stiffening as well as shifting rectus pulleys.

Download full-text PDF

Source

Publication Analysis

Top Keywords

structural features
12
eom pulleys
12
quantitative analysis
8
analysis structure
8
extraocular muscle
8
eom paths
8
pulleys
8
features pulleys
8
pulleys intercouplings
8
composition eom
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!