Due to the instability of DNA oligonucleotides in biological solutions, antisense or antigene therapies aimed at modulation of specific gene expression will most likely require the use of oligonucleotides with modified backbones. Here, we examine the use of a surface plasmon resonance biosensor (BIAcore) to compare triplex-directed binding of modified oligonucleotides targeted to a region of the murine c-myc promoter. We describe optimization of experimental conditions to minimize nonspecific interactions between the oligonucleotides and the sensor chip surface, and the limitations imposed by certain backbones and sequence types. The abilities of pyrimidine oligonucleotides with various modified backbones to form specific triple helices with an immobilized hairpin duplex were readily determined using the biosensor. Modification of the third-strand oligonucleotide with RNA or 2(')-O-methyl RNA was found to enhance triplex formation, whereas phosphorothioate or phosphotriester substitutions abrogated it. A comparison of these results to DNase I footprinting experiments using the same oligonucleotides showed complete agreement between the two sets of data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-2697(02)00063-5 | DOI Listing |
Commun Chem
January 2025
Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
Mol Biol Rep
January 2025
State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
Background: Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp.
View Article and Find Full Text PDFAnal Chem
January 2025
Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States.
Accurate characterization of therapeutic RNA, including purity and identity, is critical in drug discovery and development. Here, we utilize denaturing and non-denaturing chromatography for the analysis of ∼25 kDa divalent small interfering RNA (di-siRNA), which comprises a complex 2:1 triplex structure. Ion pair reversed-phase (IPRP) liquid chromatography (LC) experiments with UV absorbance and mass spectrometry (MS) showcase a single denaturing LC method for identity confirmation, impurity profiling, and sequencing with automated MS data interpretation.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.
View Article and Find Full Text PDFAnal Chem
January 2025
Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China.
Flap endonuclease 1 (FEN1) is a specific enzyme capable of recognizing and cleaving triplex DNA structures and releasing 5'-flap fragments. It plays a crucial role in the DNA metabolism of cells, participating in DNA replication and the repair of damaged DNA. Additionally, FEN1 is overexpressed in various tumor tissues, promoting tumor progression and drug resistance through different regulatory mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!