Co-evolution of the genetic code and ribozyme replication.

J Theor Biol

Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.

Published: July 2002

The origin of translation has stimulated much discussion since the basic processes involved were deciphered during the 1960s and 1970s. One strand of thought suggested that the process originated from RNA replication in the RNA world (Weiner & Maizels, 1987, 1994). In this paper I seek to extend this model. The mRNA originates as a replication intermediate of minus-strand ribozyme replication and thus contains all the genetic information contained in both the ribozyme portion and the putative tRNA-like portion of the RNA molecule. Qualitatively, this is similar to the model for the origin of chromosomes (Szathmary & Maynard-Smith, 1993, Maynard-Smith & Szathmary, 1993). This model explicitly describes the evolution of early chromosomes and the role replication played in generating the modern mRNA. Moreover, by pursuing this model, the START and STOP codons were derived and their original function with regard to the primitive 23S ribosomal RNA is suggested. Co-evolution of the genetic code (Wong, 1975) is also contained within the model. Lastly, I address some of the benefits and costs that the process may have for the organism in the context of autotrophy in the RNA world.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jtbi.2002.3013DOI Listing

Publication Analysis

Top Keywords

co-evolution genetic
8
genetic code
8
ribozyme replication
8
replication
5
rna
5
model
5
code ribozyme
4
replication origin
4
origin translation
4
translation stimulated
4

Similar Publications

Genetic Warfare: The Plant Genome's Role in Fending Off Insect Invaders.

Arch Insect Biochem Physiol

December 2024

Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China.

The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction.

View Article and Find Full Text PDF

Serotonin is a potent immunomodulatory neurohormone. Activities of the serotonergic and immune systems are often reported together in poultry studies with unidirectional analyses focused on serotonergic signaling mediating immune response. Considering serotonin's relevance across a range of immune-related poultry topics, elucidation of whether the immune system affects the serotonergic system can provide valuable insights into the bi-directionality of poultry neuroendocrine-immune interactions.

View Article and Find Full Text PDF

Bacteriophages, known for their ability to kill bacteria, are hampered in their effectiveness because bacteria are able to rapidly develop resistance, thereby posing a significant challenge for the efficacy of phage therapy. The impact of evolutionary trajectories on the long-term success of phage therapy remains largely unclear. Herein, we conducted evolutionary experiments, genomic analysis, and CRISPR-mediated gene editing, to illustrate the evolutionary trajectory occurring between phages and their hosts.

View Article and Find Full Text PDF

CRISPR in mobile genetic elements: counter-defense, inter-element competition and RNA-guided transposition.

BMC Biol

December 2024

Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.

CRISPR are adaptive immunity systems that protect bacteria and archaea from viruses and other mobile genetic elements (MGE) via an RNA-guided interference mechanism. However, in the course of the host-parasite co-evolution, CRISPR systems have been recruited by MGE themselves for counter-defense or other functions. Some bacteriophages encode fully functional CRISPR systems that target host defense systems, and many others recruited individual components of CRISPR systems, such as single repeat units that inhibit host CRISPR systems and CRISPR mini-arrays that target related viruses contributing to inter-virus competition.

View Article and Find Full Text PDF

De novo assembly of a near-complete genome of aquatic vegetable Zizania latifolia in the Yangtze River Basin.

Sci Data

December 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Watershed Ecology, School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China.

The cultivated Zizania latifolia, an aquatic vegetable prevalent in the Yangtze River Basin, represents a unique plant-fungus complex whose domestication is associated with host-parasite co-evolution. In this study, we present a high-quality, chromosome-scale genome assembly of cultivated Z. latifolia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!