Recently, neuronal correlates of acupuncture stimulation in human brain have been investigated by functional neuroimaging. The preliminary findings suggest that acupuncture at analgesic points involves the pain-related neuromatrix and may have acupoint-brain correlation. Although multiple models of control stimulations have been applied to address the specificity of the needling effect clinically, their impacts have not been evaluated by functional neuroimaging. With the advantage of objective parameter setting, electroacupuncture (EA) was used in this study to devise three distinct controls for real EA, i.e., mock EA (no stimulation), minimal EA (superficial and light stimulation), and sham EA (same stimulation as real EA) applied at nonmeridian points. Fifteen healthy volunteers received real EA at analgesic point Gallbladder 34 (Yanglinquan), sham EA, and one of either mock EA or minimal EA over the left leg in counter-balanced orders. Multisubject analysis showed that sham EA and real EA both activated the reported distributed pain neuromatrix. However, real EA elicited significantly higher activation than sham EA over the hypothalamus and primary somatosensory-motor cortex and deactivation over the rostral segment of anterior cingulate cortex. In the comparison of minimal EA versus mock EA, minimal EA elicited significantly higher activation over the medial occipital cortex. Single-subject analysis showed that superior temporal gyrus (encompassing the auditory cortex) and medial occipital cortex (encompassing the visual cortex) frequently respond to minimal EA, sham EA, or real EA. We concluded that the hypothalamus-limbic system was significantly modulated by EA at acupoints rather than at nonmeridian points, while visual and auditory cortical activation was not a specific effect of treatment-relevant acupoints and required further investigation of the underlying neurophysiological mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/nimg.2002.1145 | DOI Listing |
JAMA Netw Open
January 2025
Laboratory of NeuroImaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.
Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.
Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).
Brain Imaging Behav
January 2025
Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), Wuhan, China.
Bipolar disorder (BD) is a complex psychiatric condition marked by significant mood fluctuations that deeply affect quality of life. Understanding the neural mechanisms underlying BD is critical for improving diagnostic accuracy and developing more effective treatments. This study utilized resting-state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity within the ventral and dorsal attention networks in 52 patients with BD and 51 healthy controls.
View Article and Find Full Text PDFObesity (Silver Spring)
February 2025
Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Objective: The objective of this study was to investigate underlying mechanisms of long-term effective weight loss after laparoscopic sleeve gastrectomy (LSG) and effects on the medial orbitofrontal cortex (mOFC) and cognition.
Methods: A total of 18 individuals with obesity (BMI ≥ 30 kg/m) underwent LSG. Clinical data, cognitive scores, and brain magnetic resonance imaging scans were evaluated before LSG and 12 months after LSG.
Brain
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.
View Article and Find Full Text PDFMach Learn Clin Neuroimaging (2024)
December 2024
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
Many longitudinal neuroimaging studies aim to improve the understanding of brain aging and diseases by studying the dynamic interactions between brain function and cognition. Doing so requires accurate encoding of their multidimensional relationship while accounting for individual variability over time. For this purpose, we propose an unsupervised learning model (called ntrastive Learning-based ph Generalized nonical Correlation Analysis (CoGraCa)) that encodes their relationship via Graph Attention Networks and generalized Canonical Correlational Analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!