Previous studies reported on both visible and invisible particles in University of Wisconsin (UW) solutions. Those particles originated from components of the bags. In recent clinical observations we noticed macroscopically visible, indissoluble particles in UW bags reaching subzero temperatures during transportation of organs and preservation solutions. In an experimental model we examined whether those particles could be detected following perfusion of abdominal organs with established perfusion solutions. UW-, HTK- or physiological saline solutions reached -3 +/- 0.5 degrees C under conditions frequently applied during transportation. UW solutions demonstrated the accumulation of visible, indissoluble crystals and were subsequently used for the perfusion of abdominal organs in LEW rats. After perfusion with UW solutions stored at freezing temperatures, crystals were detected in all abdominal organs localized in and around vessels, bile ducts, glomeruli and in the interstitium of harvested livers, kidneys and pancreas. By spectroscopy, we were able to characterize crystals as adenosine. A 40-microm pore-size filter eliminated crystals from UW solutions. Crystals were absent in organs perfused with HTK- or saline solutions kept at subzero conditions. UW solutions can reach subzero temperatures under commonly used transportation conditions. Under these conditions, visible crystals accumulate and can be detected in abdominal organs of an experimental system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-6143.2002.20707.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!