A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanisms of endothelial survival under shear stress. | LitMetric

Mechanisms of endothelial survival under shear stress.

Endothelium

Cerebrovascular Research Center, Department of Neurological Surgery, Cleveland Clinic Foundation, 9500 Euclid Avenue/NB20, Cleveland, OH 44195, USA.

Published: March 2003

Endothelial cells (ECs) are exposed to cytotoxic reactive oxygen species and oxidation products of NO, yet they are characterized by low apoptotic rates and have an average life span of many years. EC exposure to flow has been shown to downregulate cell cycle-related genes and cause cytoskeletal rearrangement. We hypothesized that exposure to flow also causes molecular and physiological changes that induce antioxidant properties in ECs. We used cDNA array expression profiling and protein analysis to study the responses of human ECs exposed to flow in a hollow fiber apparatus or the same ECs grown under static conditions. Our results show that shear-induced synchronized expression of processes control oxidant production; these changes included upregulation of NADH-producing enzymes (Krebs cycle dehydrogenases and glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) accompanied by simultaneous decrease in NADH-depleting pathways (e.g., lactate dehydrogenase [LDH]) and diminished production of lactate. Exposure to flow upregulated cytoskeletal genes. Our results suggest that, in addition to inhibition of cell cycle, exposure to flow influences ECs by controlling expression of enzymes involved in the generation of antioxidant intermediates and in adaptive control of cell shape. These changes may explain longevity and antioxidant efficiency of ECs and may provide insight in mechanisms leading to pathological conditions such as arteriosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10623320212004DOI Listing

Publication Analysis

Top Keywords

exposure flow
16
ecs exposed
8
ecs
6
flow
5
mechanisms endothelial
4
endothelial survival
4
survival shear
4
shear stress
4
stress endothelial
4
endothelial cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!