A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-term sodium balance in humans in a terrestrial space station simulation study. | LitMetric

AI Article Synopsis

  • Recent studies challenge the traditional view that sodium accumulation only occurs in the extracellular space, leading to water retention and weight gain.
  • In a long-term study simulating spaceflight, three healthy subjects accumulated significant amounts of sodium and gained weight, showing a correlation between sodium levels and body weight.
  • Findings indicate that sodium can accumulate in an osmotically inactive form, suggesting the presence of a sodium reservoir in tissues like bone or cartilage, contrary to the established understanding of sodium's effects on body weight.

Article Abstract

Background: Sodium accumulation has been considered to take place in the extracellular space, leading to water retention and weight gain. This traditional view has been questioned by recent studies that showed sodium accumulation in humans without expansion of the extracellular volume. We investigated sodium balance and its impact on body weight (BW) during a long-term balance study.

Methods: Three healthy subjects were confined to a terrestrial MIR simulator for 135 days under conditions simulating a long-term spaceflight. During the entire isolation period, we meticulously measured daily sodium balance and its contribution to BW.

Results: During the study period, subjects accumulated between 2,973 and 7,324 mmol of sodium and gained between 5.1 and 9.3 kg in weight. In all subjects, there was a positive correlation between changes in total-body sodium (DeltaTBS) content and BW, reflecting sodium-associated volume expansion. However, toward the end of isolation, sodium gain exceeded weight gain, suggesting that sodium accumulated in an osmotically inactive form. Especially at the onset of the experiment, two subjects showed inverse correlations between DeltaTBS and BW.

Conclusion: The finding of sodium gain without weight gain is in contradiction to the widely accepted theory that changes in TBS levels are accompanied by changes in extracellular volume. We suggest the existence of a sodium reservoir with the ability to store significant amounts of sodium in an osmotically inactive form. This reservoir might be located in bone, dense connective tissue, or cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1053/ajkd.2002.34908DOI Listing

Publication Analysis

Top Keywords

sodium balance
12
weight gain
12
sodium
11
sodium accumulation
8
extracellular volume
8
sodium gain
8
osmotically inactive
8
inactive form
8
weight
5
gain
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!