It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/oxfordjournals.molbev.a004207 | DOI Listing |
Genome Biol Evol
January 2025
School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK.
Meiosis is generally a fair process: each chromosome has a 50% chance of being included into each gamete. However, meiosis can become aberrant with some chromosomes having a higher chance of making it into gametes than others. Yet, why and how such systems evolve remains unclear.
View Article and Find Full Text PDFEvolution
January 2025
Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, United States.
Male reproductive proteins frequently evolve rapidly in animals, potentially due to adaptive evolution driven by sperm competition, polyspermy avoidance, or pathogen defense. Alternatively, elevated rates of protein change may be due to relaxed constraint. The prostate-specific protease KLK3 has experienced dynamic evolution since its origin stemming from a gene duplication in the ancestor of all Old World primates, with instances of rapid evolution, stasis, and pseudogenization.
View Article and Find Full Text PDFDNA Res
January 2025
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.
View Article and Find Full Text PDFGynecol Oncol Rep
February 2025
Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.
Endometrial stromal tumors (ESTs) are uncommon mesenchymal tumors of the reproductive system associated with heterogeneous histomolecular features. According to the World Health Organization (WHO), ESTs are classified into benign endometrial stromal nodules (BESN) and endometrial stromal sarcomas (ESSs), which are further divided into low-grade and high-grade subtypes. High-grade ESS is frequently associated with YWHAE-NUTM2 gene fusions, while a newly recognized subtype with BCOR rearrangements, including fusions, alterations, and internal tandem duplications (ITDs), has recently been incorporated into the molecular classification of ESS.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA.
In the past decade, our understanding of how new genes originate in diverse organisms has advanced substantially, and more than a dozen molecular mechanisms for generating initial gene structures were identified, in addition to gene duplication. These new genes have been found to integrate into and modify pre-existing gene networks primarily through mutation and selection, revealing new patterns and rules with stable origination rates across various organisms. This progress has challenged the prevailing belief that new proteins evolve from pre-existing genes, as new genes may arise de novo from noncoding DNA sequences in many organisms, with high rates observed in flowering plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!