At several E. coli promoters, initiation of transcription is repressed by a tight nucleoprotein complex formed by the assembly of the H-NS protein. In order to characterize the relationship between the structure of H-NS oligomers in solution and on relevant DNA fragments, we have compared wild-type H-NS and several transdominant H-NS mutants using gel shift assays, DNase I footprinting, analytical ultracentrifugation, and reactivity toward a cross-linking reagent. In solution, oligomerization occurs through two protein interfaces, one necessary to construct a dimeric core (and involving residues 1-64) and the other required for subsequent assembly of these dimers. We show that, as well as region 64-95, residues present in the NH(2)-terminal coiled coil domain also participate in this second interface. Our results support the view that the same interacting interfaces are also involved on the DNA. We propose that the dimeric core recognizes specific motifs, with the second interface being critical for their correct head to tail assembly. The COOH-terminal domain of the protein contains the DNA binding motif essential for the discrimination of this specific functional assembly over competitive nonspecific H-NS polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M206037200DOI Listing

Publication Analysis

Top Keywords

dimeric core
8
second interface
8
h-ns
6
degree oligomerization
4
oligomerization h-ns
4
h-ns nucleoid
4
nucleoid structuring
4
protein
4
structuring protein
4
protein specific
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Structural basis of phosphate export by human XPR1.

Nat Commun

January 2025

Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.

Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.

View Article and Find Full Text PDF

Heart failure is a common and deadly disease requiring new treatments. The neuregulin-1/ERBB4 pathway offers cardioprotective benefits, but using recombinant neuregulin-1 as therapy has limitations due to the need for intravenous delivery and lack of receptor specificity. We hypothesize that small-molecule activation of ERBB4 could protect against heart damage and fibrosis.

View Article and Find Full Text PDF

Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.

View Article and Find Full Text PDF

Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!