Intracellular symbiosis requires that the host satisfy the symbiont's metabolic requirements, including the elimination of waste products. The hydrothermal vent tubeworm Riftia pachyptila and the hydrocarbon seep worm Lamellibrachia cf luymesi are symbiotic with chemolithoautotrophic bacteria that produce sulfate and protons as end-products. In this report, we examine the relationship between symbiont metabolism and host proton equivalent elimination in R. pachyptila and L. cf luymesi, and the effects of sulfide exposure on proton-equivalent elimination by Urechis caupo, an echiuran worm that lacks intracellular symbionts (for brevity, we will hereafter refer to proton-equivalent elimination as 'proton elimination'). Proton elimination by R. pachyptila and L. cf luymesi constitutes the worms' largest mass-specific metabolite flux, and R. pachyptila proton elimination is, to our knowledge, the most rapid reported for any metazoan. Proton elimination rates by R. pachyptila and L. cf luymesi correlated primarily with the rate of sulfide oxidation. Prolonged exposure to low environmental oxygen concentrations completely inhibited the majority of proton elimination by R. pachyptila, demonstrating that proton elimination does not result primarily from anaerobic metabolism. Large and rapid increases in environmental inorganic carbon concentrations led to short-lived proton elimination by R. pachyptila, as a result of the equilibration between internal and external inorganic carbon pools. U. caupo consistently exhibited proton elimination rates 5-20 times lower than those of L. cf luymesi and R. pachyptila upon exposure to sulfide. Treatment with specific ATPase inhibitors completely inhibited a fraction of proton elimination and sulfide and inorganic carbon uptake by R. pachyptila, suggesting that proton elimination occurs in large part via K(+)/H(+)-ATPases and Na(+)/H(+)-ATPases. In the light of these results, we suggest that protons are the primary waste product of the symbioses of R. pachyptila and L. cf luymesi, and that proton elimination is driven by symbiont metabolism, and may be the largest energetic cost incurred by the worms.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.205.19.3055DOI Listing

Publication Analysis

Top Keywords

proton elimination
44
elimination
16
elimination pachyptila
16
pachyptila luymesi
16
proton-equivalent elimination
12
proton
12
inorganic carbon
12
pachyptila
11
tubeworm riftia
8
riftia pachyptila
8

Similar Publications

A small but growing set of radical SAM (-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway.

View Article and Find Full Text PDF

The misuse and uncontrolled release of pharmaceuticals into water bodies lead to environmental challenges and the development of resistance, thereby reducing their effectiveness. To mitigate these problems, it is essential to identify pharmaceuticals in water sources and eliminate them prior to human use. This study presents the designing of a novel nanosensor for the detection of the antibiotic Cefoperazone Sodium Sulbactam Sodium (CSSS).

View Article and Find Full Text PDF

IPEM code of practice for proton therapy dosimetry based on the NPL primary standard proton calorimeter calibration service.

Phys Med Biol

January 2025

Radiotherapy and Radiation Dosimetry group, National Physical Laboratory, Hampton Road, Middlesex, Teddington, TW11 0LW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Internationally, reference dosimetry for clinical proton beams largely follows the guidelines published by the International Atomic Energy Agency (IAEA TRS-398 Rev. 1, 2024). This approach yields a relative standard uncertainty of 1.

View Article and Find Full Text PDF

Palladium-catalysed asymmetric cascade transformations of 4-alken-2-ynyl carbonates to construct complex frameworks.

Chem Sci

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609.

As a class of readily available and multifunctional building blocks, the chemistry of 4-alken-2-ynyl carbonates remains to be explored. Presented herein is a palladium-catalysed cascade transformative reaction between 4-alken-2-ynyl carbonates and -functionalised activated alkenes. Achiral 1,1-bisalkyl-4-alken-2-ynyl carbonates undergo highly regioselective propargylic substitution with -hydroxyphenyl-tethered activated alkenes, and an auto-tandem vinylogous addition, unusual central-carbon Tsuji-Trost alkylation, protonation and β-H elimination process is followed to furnish fused and spirocyclic frameworks with high structural complexity.

View Article and Find Full Text PDF

Gastroesophageal reflux is a common physiologic event in infants in which gastric contents pass from the stomach into the esophagus. Gastroesophageal reflux may be asymptomatic or cause regurgitation or "spit up." This occurs daily in approximately 40% of infants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!