Female German cockroaches usually carry their oothecae until they hatch. The success of embryogenesis may be dependent on the water-balance relationship between females and their developing oothecae. Oothecae detached from females early in embryogenesis often fail to develop, especially in low-humidity environments. Experiments reported here using tritiated water have confirmed the transport of a significant amount of water to the ootheca from the female during embryogenesis; 18% of the tritiated water injected into gravid females was recovered in their oothecae after 24 h. We describe a structural basis of water absorption by the oothecae. An area located on the proximal end of the ootheca (adjacent to the 'escutcheon-shaped vaginal imprint') contains small pores that penetrate the oothecal covering to access regions of the chorion lying beneath these pores. Experiments using microparabiotic chambers to examine transport of tritiated water and water-soluble materials across the escutcheon region of the oothecal covering, along with dark-field birefringent microscopy of the chorion, support the hypothesis that this chorionic network is capable of conducting water throughout the interior of the ootheca. Furthermore, the structural arrangement and intimate association of the female vestibulum with the oothecal pore field contained in the region of the escutcheon-shaped vaginal imprint appear to provide an efficient conduit to the chorion. The overall structural relationship might be a means for maintaining water balance between females and their oothecae during embryonic development. Evidence presented here supports observations that this species represents an important link in the transition from oviparity to ovoviviparity by internalization of cockroach oothecae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.205.19.2987 | DOI Listing |
Environ Pollut
January 2025
Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.
Workers involved in the decommissioning and removal of radioactive material from nuclear power plants can come into contact with tritiated dust from stainless steel. This study aimed to investigate metal penetration and permeation after skin contamination with these particles. Static diffusion Franz cells were used with intact, damaged, or broken human skin.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Laboratory of Radiological Disasters and Medical Science, International Research Institute of Disaster Science, Tohoku University, 519-1176 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-0845, Japan.
This study investigated the induction of DNA double-strand breaks (DSBs) in the hTERT-immortalized normal human diploid epithelial cells (RPE1-hTERT) continuously exposed to 6000 Bq/ml of tritiated water (HTO) and organically bound tritium (OBT). The relationship of the DSBs induction with the intracellular amount as well as the localization of tritium was also examined. Tritium-labeled thymidine (3H-Thy) and palmitic acid (3H-PA) were used as OBT.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Department of Nuclear and Radiochemical Science, Kyushu Environmental Evaluation Association, 1-10-1 Matsukadai, Higashiku Fukuoka 813-0004, Japan.
The new electrolytic enrichment system with compact glass cell was designed. Three (Ni-Fe-Ni) electrodes are used, and electrolysis is carried out at a rate of 2.45 g per h with constant current density of 120 mA per cm2.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Water Treatment Center Administration Group, Water Treatment Center, Fukushima Dai-ichi D&D Engineering Company, Tokyo Electric Power Company Holdings, Inc. 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100-8560, Japan.
Tokyo Electric Power Company, TEPCO, has started tritiated water release into the Pacific Ocean. In order to reduce unreasonable rumor caused by tritium release, flounder, abalone, and sarggasum were exposed to tritium enriched seawater, and time dependent Tissues Free Water Tritium (TFWT) concentration was measured. Estimating the concentration of Organically Bound Tritium (OBT) is important to assess tritium impact because it has a longer biological half-life than TFWT.
View Article and Find Full Text PDFSci Total Environ
October 2023
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292, Japan.
When conducting environmental tritium monitoring at nuclear and fusion facilities, it is important to understand how tritium concentrations vary within the soil-plant-atmosphere continuum. Past measurements of organically bound tritium (OBT) concentrations have been conducted from the standpoint of ascertaining the persistence of tritium in terrestrial vegetation, and it has been reported that OBT concentrations fluctuate depending on the influence of atmospheric sources and meteorological conditions. The present study provides information on the variability of tritium concentrations in vegetation growing close to atmospheric sources of tritiated water (HTO) in Japan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!