Hypoxia plays an important role in vascular remodeling and directly affects vascular smooth muscle cell (VSMC) functions. VSMC adhesion participates in changes of vascular structure; however, little is known about VSMC adhesion under hypoxic conditions. It was the aim of the present study to investigate the effects of hypoxia on adhesion mechanisms in human VSMCs. Compared to normoxic cells, hypoxia (1% O(2), 24h) significantly increased adhesion of VSMCs to collagen I by 30.2% and fibronectin by 58.0%. This effect was completely inhibited in the presence of the pharmacological ERK 1/2 mitogen-activated protein kinase (MAPK) pathway inhibitor PD98059 (30 microM) or the p38 MAPK inhibitor SB203580 (1 microM). Basal adhesion of normoxic cells was not affected by pretreatment with PD98059 and SB203580. Hypoxia induced a time-dependent activation of ERK 1/2 and p38 MAPK activation in human VSMCs, which were completely abolished by PD98059 or SB203580, respectively. Since adhesion of VSMCs to fibronectin and collagen I involves beta(1)-integrin receptors, we used a blocking antibody against beta(1)-integrin (P5D2) to examine potential effects of hypoxia on beta(1)-integrins. P5D2 significantly reduced VSMC adhesion to fibronectin and collagen I in normoxia and hypoxia in a comparable manner; however, beta(1)-integrin protein or mRNA levels were not affected by hypoxia. As evidenced by flow cytometry, hypoxia induced a activation of beta(1)-integrins by exposing an conformationally sensitive epitope on the beta(1)-subunit. These results demonstrate that hypoxia enhances adhesion of VSMC on extracellular matrix proteins by activating beta(1)-integrin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(02)02033-8 | DOI Listing |
PLoS One
January 2025
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
Cadmium is a non-essential element and neurotoxin that causes neuroinflammation, which leads to neurodegenerative diseases and brain cancer. To date, there are no specific or effective therapeutic agents to control inflammation and alleviate cadmium-induced progressive destruction of brain cells. Fluoroquinolones (FQs), widely used antimicrobials with effective blood-brain barrier penetration, show promise in being repurposed as anti-inflammatory drugs.
View Article and Find Full Text PDFJ Transl Int Med
December 2024
Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China.
Background And Objectives: Histone deacetylase (HDAC) families regulate various physical processes and the development of several diseases. The role of HDACs in asthma development and progression worths further investigation. This study aims to evaluate the effect of HDACs in a mouse model of asthma.
View Article and Find Full Text PDFJ Food Sci
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.
Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.
View Article and Find Full Text PDFJ Neurochem
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!