The paper presents a novel on-line transient moving chemical reaction boundary method (tMCRBM) for simply but efficiently stacking ionizable analytes in high-salt matrix in capillary zone electrophoresis (CZE). The powerful function and stability of the tMCRBM are elucidated with the ionizable test analytes of L-phenylalanine (Phe) and L-tryptophan (Trp) in the matrix with 85.6-165.6 mM sodium ion and further compared with the normal CZE of Phe and Trp samples dissolved in running buffer. The results verify that (1) the on-line tMCRBM mode can evidently increase separation efficiency, peak height, and resolution, (2) with the mode, the analytes in a 28-cm high-salt matrix plug can be stacked successfully and further separated well, (3) the values of relative standard deviation of peak height, peak area, and migrating time range from 3.9% to 6.1%; the results indicate the high stability of the technique of tMCRBM-CZE. The techniques implies obvious potential significance for those ionizable analytes, e.g., protein, peptide, and weak alkaline or acidic compound, in such matrixes as serum, urine, seawater, and wastewater, with high salt, which has a deleterious effect on isotachophoresis (ITP) and especially on electrostacking and field-amplified sample injection (FASI). The mechanism of stacking of zwitterionic analytes in a high-salt matrix by the tMCRBM relies on non-steady-state isoelectric focusing (IEF) but not on transient ITP, electrostacking, and FASI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac0201880 | DOI Listing |
Anal Chim Acta
January 2025
University Regensburg, Institute of Analytical Chemistry, Universitätsstrasse 31, 93053, Regensburg, Germany. Electronic address:
Background: The demand for lithium-ion cells in the automotive industry is rapidly growing due to the increasing electrification of the transportation sector. The electrolyte composition plays a critical role in determining the lifetime and performance of these large-format cells. Additionally, advancements in this field are leading to frequent changes in both electrode materials and electrolyte formulations.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark.
Osimertinib (AZD9291) is a widely used tyrosine kinase inhibitor for the treatment of non-small cell lung cancer patients with activating EGFR mutations. However, the correlation between dose and efficacy has been debated for several years. For this reason, there is a need for standardized methods for routine analysis, clinical studies on pharmacokinetics and dose-response relationships, and greater understanding of preanalytical conditions, such as sample storage stability.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Background: Amyloid β (Aβ) deposition in the brain is a pathological hallmark of Alzheimer's disease (AD). While immunoprecipitation-mass spectrometry (IP-MS) stands out as an accurate method for quantifying blood-based Aβ peptides, its major limitations such as prolonged sample preparation, extensive analysis time, large specimen volume, and high costs, present opportunities for improvement. Consequently, we aimed to develop a novel plasma IP-MS Aβ assay that employs simplified and significantly shorter analytical procedures, along with much-reduced sample volumes.
View Article and Find Full Text PDFBackground: The rapidly growing pipeline of target-specific Alzheimer's Disease (AD) therapeutic candidates requires accompanying tests that can identify patients likely to have a beneficial response. The growing importance of multiple pathologies in determining AD progression and treatment response underscores this need. Our work focuses on establishing analytical capability to expand detectable forms of major protein drug targets for AD: Tau, amyloid beta (Ab) and a-Synuclein (aS) proteoforms as potential personalized molecular signatures.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!