The interaction between ATP- and high K(+)-evoked increase in intracellular free calcium concentration ([Ca2+]i) was investigated to gain an insight into the mechanism of interaction of ATP with voltage-sensitive calcium channels. [Ca2+]i was measured in the neuronal model, neuroblastoma x glioma hybrid cells (NG 108-15), using the fluorescence indicator fura-2. In the presence of 1.8 mM extracellular Ca2+, ATP induced a rapid, concentration-dependent increase in [Ca2+]i. High K+ (50 mM) evoked a [Ca2+]i rise from 109 +/- 11 nM to 387 +/- 81 nM (n = 16). The application of either of these two [Ca2+]i-increase provoking agents in sequence with the other caused impairment of the latter effect. The mutual desensitization of the responses to ATP and high K+ strongly suggests that both agents rely at least in part on the same source of Ca2+ for elevation of [Ca2+]i in NG 108-15 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1019836316887 | DOI Listing |
Biomolecular condensates are a ubiquitous component of cells, known for their ability to selectively partition and compartmentalize biomolecules without the need for a lipid membrane. Nevertheless, condensates have been shown to interact with lipid membranes in diverse biological processes, such as autophagy and T-cell activation. Since many condensates are known to have a net surface charge density and associated electric potential(s), we hypothesized that they can induce a local membrane potential.
View Article and Find Full Text PDFACS Nano
January 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.
View Article and Find Full Text PDFBMC Genomics
January 2025
Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.
Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.
View Article and Find Full Text PDFBiochem J
January 2025
Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases. It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNA) and the circular plasmids non-specifically using its PBS.
View Article and Find Full Text PDFiScience
January 2025
Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy.
The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V) and proton transport (V) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!