Background & Aims: APC gene mutation is an early alteration in most colorectal tumors. In an attempt to determine its role in tumor development, we asked whether reintroducing wild-type APC into colorectal cancer cells with mutant APC affected cell cycle progression.
Methods: Using transient transfection, a plasmid containing the APC complementary DNA and DNA encoding the green fluorescent protein was expressed in SW480 cells. In addition, several other constructs were co-expressed with APC to determine their combined effects.
Results: We report that colorectal cancer cell lines transfected with wild-type APC arrest in the G(1)- phase of the cell cycle and that this arrest is abrogated by cotransfecting constitutively active beta-catenin or cyclin D1 and cMYC together. This APC-induced cell cycle arrest involves the disruption of beta-catenin-mediated transcription and depends on components of the G(1)/S regulatory machinery, as overexpression of E1a or E2F-1, -2, or -3 overrides the G(1) arrest. Consistent with this, APC transfection inhibits RB phosphorylation and reduces levels of cyclin D1.
Conclusions: Our results suggest that APC functions upstream of RB in the G(1)/S regulatory pathway, cyclin D1 and cMYC affect APC-mediated arrest equivalently to oncogenic beta-catenin, and most colon tumors disrupt control of G(1)/S progression by APC mutation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/gast.2002.35382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!