Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism.

Mol Endocrinol

Department of Pharmacology Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.

Published: September 2002

Glucagon-like peptide-1 (GLP-1) elicits a glucose-dependent insulin secretory effect via elevation of cAMP and activation of protein kinase A (PKA). GLP-1-mediated closure of ATP-sensitive potassium (K(ATP)) channels is involved in this process, although the mechanism of action of PKA on the K(ATP) channels is not fully understood. K(ATP) channel currents and membrane potentials were measured from insulin-secreting INS-1 cells and recombinant beta-cell K(ATP) channels. 20 nM GLP-1 depolarized INS-1 cells significantly by 6.68 +/- 1.29 mV. GLP-1 reduced recombinant K(ATP) channel currents by 54.1 +/- 6.9% in mammalian cells coexpressing SUR1, Kir6.2, and GLP-1 receptor clones. In the presence of 0.2 mM ATP, the catalytic subunit of PKA (cPKA, 20 nM) had no effect on SUR1/Kir6.2 activity in inside-out patches. However, the stimulatory effects of 0.2 mM ADP on SUR1/Kir6.2 currents were reduced by 26.7 +/- 2.9% (P < 0.05) in the presence of cPKA. cPKA increased SUR1/Kir6.2 currents by 201.2 +/- 20.8% (P < 0.05) with 0.5 mM ADP present. The point mutation S1448A in the ADP-sensing region of SUR1 removed the modulatory effects of cPKA. Our results indicate that PKA-mediated phosphorylation of S1448 in the SUR1 subunit leads to K(ATP) channel closure via an ADP-dependent mechanism. The marked alteration of the PKA-mediated effects at different ADP levels may provide a cellular mechanism for the glucose-sensitivity of GLP-1.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2002-0084DOI Listing

Publication Analysis

Top Keywords

katp channels
12
katp channel
12
glucagon-like peptide-1
8
atp-sensitive potassium
8
protein kinase
8
adp-dependent mechanism
8
channel currents
8
ins-1 cells
8
effects adp
8
sur1/kir62 currents
8

Similar Publications

Lactate: Beyond a Mere Fuel in the Epileptic Brain.

Neuropharmacology

December 2024

Department of Pharmacology, Medical School of Southeast University, Nanjing, China. Electronic address:

Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the Astrocyte-Neuron Lactate Shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression.

View Article and Find Full Text PDF

Objective: Aim: Our study aimed to investigate the connection between the ABCC8 gene polymorphisms (rs1801261 and rs757110) and T2DM in the Iraqi Middle Euphrates region. Patients with type 2 diabetes were chosen because they were treated with glibenclamide and glimepiride.

Patients And Methods: Materials and Methods: The groups of this case-control study are the control group obviously healthy persons included 400 (235 Male/165 Female) and 400 T2DM group (213 Male/ 187 Female).

View Article and Find Full Text PDF

Dexmedetomidine suppresses glucose-stimulated insulin secretion in pancreatic β-cells.

FEBS Open Bio

December 2024

Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.

Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS).

View Article and Find Full Text PDF

Introduction: Involved in immunity and reproduction, natural killer (NK) cells offer opportunities to develop new immunotherapies to treat infections and cancer or to alleviate pregnancy complications. Most current strategies use cytokines or antibodies to enhance NK-cell function, but none use ion channel modulators, which are widely used in clinical practice to treat hypertension, diabetes, epilepsy, and other conditions. Little is known about ion channels in NK cells.

View Article and Find Full Text PDF

Do K channels have a role in immunity?

Front Immunol

December 2024

Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.

Ion channels, exchangers and pumps are expressed ubiquitously in cells from all phyla of life. In mammals, their role is best described in excitable cells, where they regulate the initiation and propagation of action potentials. There are over 70 different types of K channels subunits that contribute to these processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!