Reduction of tantalum pentachloride by 6 equiv of sodium naphthalene in 1,2-dimethoxyethane provided, after recrystallization from tetrahydrofuran, 50-55% yields of yellow, pyrophoric [Na(THF)][Ta(C10H8)3]. The product was shown by 1H and 13C NMR spectra and an X-ray study (on the corresponding [Na(crypt 2.2.2)]salt) to be tris(eta4-naphthalene)tantalate(1-), 1, the first homoleptic naphthalene complex of a third row (5d) transition metal. Salts of 1 react under mild conditions with excess CO (1 atm pressure, -60 degrees to +20 degrees C) and 3 equiv of anthracene, C14H10 (20 degrees C), to give 99 and 52% yields of yellow [Ta(CO)6]- and orange [Ta(C14H10)3]-, (2), respectively. The latter is the first homoleptic anthracene complex of a group 5 element and only the third one known, the others being Cr(eta6-C14H10)2 and [Co(eta4-C14H10)2]-. NMR spectra and X-ray structural characterization, as the [Na(crypt 2.2.2)] salt, established 2 to be [Ta(1-4-eta4-C14H10)3]- and is very similar to 1 in solution and in the solid state. Salts of 2 also undergo facile ligand substitution reactions. For example, it reacts with 1,3,5,7-cyclooctatetraene, COT, at 20 degrees in THF to give high yields of the previously known [Ta(COT)3]-, which was structurally characterized as the Na(crypt 2.2.2)salt. One particularly important feature concerning 1 and 2 is that they are the first available synthons for "naked" atomic Ta- and promise to be useful reagents for the general exploration of low-valent tantalum chemistry. Also, 1 and 2 represent the first homoleptic arene tantalum complexes to have been prepared by conventional syntheses. The only previously known substance of this class is the neutral bis(benzene)tantalum(0), which was accessed by the co-condensation of atomic tantalum and benzene vapor in a sophisticated (electron-gun furnace equipped) metal atom reactor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja020725yDOI Listing

Publication Analysis

Top Keywords

homoleptic arene
8
yields yellow
8
nmr spectra
8
spectra x-ray
8
tantalum
5
triseta4-naphthalene- tris1-4-eta4-anthracenetantalate1-
4
homoleptic
4
tris1-4-eta4-anthracenetantalate1- homoleptic
4
arene complexes
4
complexes anionic
4

Similar Publications

Rare earth benzene tetraanion-bridged amidinate complexes.

Chem Sci

January 2025

Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China

The benzene tetraanion-bridged rare earth inverse arene amidinate complexes [{Ln(κ:η-Piso)}(μ-η:η-CH)] (2-Ln, Ln = Gd, Tb, Dy, Y; Piso = {(NDipp)C Bu}, Dipp = CH Pr-2,6) were prepared by the reduction of parent Ln(iii) bis-amidinate halide precursors [Ln(Piso)X] (Ln = Tb, Dy; X = Cl, I) or [Ln(Piso)I] (Ln = Gd, Y) with 3 eq. KC in benzene, or by the reaction of the homoleptic Ln(ii) complexes [Ln(Piso)] (Ln = Tb, Dy) with 2 eq. KC in benzene.

View Article and Find Full Text PDF

We report the synthesis, characterization, and in vitro biological activities of [Re(η-arene)]-terpyridine conjugates and their Cu complexes. The terpyridine (terpy) chelators were attached to the [Re(η-arene)] scaffold via secondary amine linkers allowing for heteroleptic mono- and homoleptic bis-terpyridine-substituted chelators. Complexation with CuCl afforded the respective square pyramidal [Cu(terpy)Cl] complexes hosted on the [Re(η-arene)] scaffold.

View Article and Find Full Text PDF

Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a MoO structural unit and a Cu(I) alkynyl cluster into a structured framework.

View Article and Find Full Text PDF

Reactions of (tricyclohexylphosphane)copper(I) chloride with two equivalents of potassium anthracene (KAn) in tetrahydrofuran (THF) at 200 K provides air-sensitive but thermally stable (at 293 K) solutions from which yellow crystalline blocks of bis[bis(tetrahydrofuran-κO)potassium] bis(μ-anthracene-κC:C)dicopper, [K(THF)][{Cu(9,10-η-CH)}] or [K(CHO)][Cu(CH)], 1, were isolated in about 50% yield. Single-crystal X-ray crystallographic analysis of 1 confirmed the presence of the first known (arene)cuprate. Also, unlike all previously known homoleptic (anthracene)metallates of d-block elements, which contain metals coordinated only to terminal rings, the organocuprate unit in 1 contains copper bound to the 9,10-carbons of the central ring of anthracene.

View Article and Find Full Text PDF

Homoleptic Transition Metal Carbonyl Cations: Synthetic Approaches, Characterization and Follow-Up Chemistry.

Acc Chem Res

October 2023

Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.

ConspectusCarbon monoxide, CO, is one of the most important ligands in organometallic chemistry. It is an excellent π-acceptor and a moderate σ-donor. Therefore, most of the known transition metal carbonyls (TMCs) exhibit a zerovalent or even negative metal oxidation state (OS) of up to -4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!