The in vitro binding of the macrophage mannose receptor to a range of different bacterial polysaccharides was investigated. The receptor was shown to bind to purified capsular polysaccharides from Streptococcus pneumoniae and to the lipopolysaccharides, but not capsular polysaccharides, from Klebsiella pneumoniae. Binding was Ca(2+)-dependent and inhibitable with d-mannose. A fusion protein of the mannose receptor containing carbohydrate recognition domains 4-7 and a full-length soluble form of the mannose receptor containing all domains external to the transmembrane region both displayed very similar binding specificities toward bacterial polysaccharides, suggesting that domains 4-7 are sufficient for recognition of these structures. Surprisingly, no direct correlation could be made between polysaccharide structure and binding to the mannose receptor, suggesting that polysaccharide conformation may play an important role in recognition. The full-length soluble form of the mannose receptor was able to bind simultaneously both polysaccharide via the carbohydrate recognition domains and sulfated oligosaccharide via the cysteine-rich domain. The possible involvement of the mannose receptor, either cell surface or soluble, in the innate and adaptive immune responses to bacterial polysaccharides is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M207057200 | DOI Listing |
Small
January 2025
Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China.
Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia.
Macrophage (Mph) polarization and functional activity play an important role in the development of inflammatory lung conditions. The previously widely used bimodal classification of Mph into M1 and M2 does not adequately reflect the full range of changes in polarization and functional diversity observed in Mph in response to various stimuli and disease states. Here, we have developed a model for the direct assessment of Mph from bronchial alveolar lavage fluid (BALF) functional alterations, in terms of phagocytosis activity, depending on external stimuli, such as exposure to a range of bacteria (, and ).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
The present study aimed to extract and purify the glycoprotein from Cirsii Herba (CHPs), and investigate its immunomodulatory activity and molecular mechanism in RAW264.7 macrophages. The results showed that CHPs contained 14.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.
View Article and Find Full Text PDFTheranostics
January 2025
Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, 02129, MA.
The mannose receptor (CD206, expressed by the gene ) is a surface marker overexpressed by anti-inflammatory and pro-tumoral macrophages. As such, CD206 macrophages play key roles in the immune response to different pathophysiological conditions and represent a promising diagnostic and therapeutic target. However, methods to specifically target these cells remain challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!