Drosophila melanogaster males deficient for the crystal (cry) locus of the Y chromosome that carry between 15 and 60 copies of the X-linked Stellate (Ste) gene are semisterile, have elevated levels of nondisjunction, produce distorted sperm genotype ratios (meiotic drive), and evince hyperactive transcription of Ste in the testes. Ste seems to be the active element in this system, and it has been proposed that the ancestral Ste gene was "selfish" and increased in frequency because it caused meiotic drive. This hypothetical evolutionary history is based on the idea that Ste overexpression, and not the lack of cry, causes the meiotic drive of cry(-) males. To test whether this is true, we have constructed a Ste-deleted X chromosome and examined the phenotype of Ste(-)/cry(-) males. If hyperactivity of Ste were necessary for the transmission defects seen in cry(-) males, cry(-) males completely deficient for Ste would be normal. Although it is impossible to construct a completely Ste(-) genotype, we find that Ste(-)/cry(-) males have exactly the same phenotype as Ste(+)/cry(-) males. The deletion of all X chromosome Ste copies not only does not eliminate meiotic drive and nondisjunction, but it also does not even reduce them below the levels produced when the X carries 15 copies of Ste.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462201 | PMC |
http://dx.doi.org/10.1093/genetics/161.4.1551 | DOI Listing |
Animals (Basel)
January 2025
Faculty of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan 48513, Republic of Korea.
Microsatellite markers are widely used in aquaculture for genetic analysis and breeding programs, but challenges such as segregation distortion and allelic instability can impact their effectiveness in parentage verification and inheritance studies. This study evaluated 15 microsatellite loci in seven experimental olive flounder () families bred through 1:1 full-sibling crosses, assessing their utility for accurate parentage and inheritance stability. Parentage assignments were conducted within an expanded pool of 647 candidate parents (including the actual 14 parents), encompassing both closely related and moderately distant individuals.
View Article and Find Full Text PDFNature
January 2025
deCODE genetics/Amgen Inc., Reykjavik, Iceland.
Human recombination maps are a valuable resource for association and linkage studies and crucial for many inferences of population history and natural selection. Existing maps are based solely on cross-over (CO) recombination, omitting non-cross-overs (NCOs)-the more common form of recombination-owing to the difficulty in detecting them. Using whole-genome sequence data in families, we estimate the number of NCOs transmitted from parent to offspring and derive complete, sex-specific recombination maps including both NCOs and COs.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.
Up to an estimated 10% of women experience miscarriage in their lifetimes. Embryonic aneuploidy is a leading cause for miscarriage, infertility and congenital defects. Here we identify variants of ELL3, a gene encoding a transcription elongation factor, in couples who experienced consecutive early miscarriages due to embryonic aneuploidy.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!