A flexible technology platform to explore valuable drug targets.

Biochem Soc Trans

Lead Discovery Pharmacology, Organon Laboratories Ltd., Newhouse, Lanarkshire ML1 5SH, UK.

Published: August 2002

The high-throughput screening platform implemented for drug discovery is driven by the therapeutic areas of interest. Therefore the speed and information derived is governed by these areas. Multiple technologies are needed to exploit this and it is also important to show reactivity to new advances in technology. In contrast with a drive over the last few years towards higher throughput and speed, higher information content will be instrumental in driving lead discovery in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1042/bst0300786DOI Listing

Publication Analysis

Top Keywords

flexible technology
4
technology platform
4
platform explore
4
explore valuable
4
valuable drug
4
drug targets
4
targets high-throughput
4
high-throughput screening
4
screening platform
4
platform implemented
4

Similar Publications

The Association of Psychological Factors With Willingness to Share Health-Related Data From Technological Devices: Cross-Sectional Questionnaire Study.

JMIR Form Res

January 2025

Department of Medical and Clinical Psychology, Center of Research on Psychological Disorders and Somatic Diseases (CoRPS), Tilburg University, Tilburg, the Netherlands, 31 134662142.

Background: Health-related data from technological devices are increasingly obtained through smartphone apps and wearable devices. These data could enable physicians and other care providers to monitor patients outside the clinic or assist individuals in improving lifestyle factors. However, the use of health technology data might be hampered by the reluctance of patients to share personal health technology data because of the privacy sensitivity of this information.

View Article and Find Full Text PDF

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

This study aims to establish a thyristor-controlled series compensator (TCSC) equipped with a proportional integral derivative with filter (PIDF) controller by using a futuristic optimisation technique called evolutionary programming sine cosine algorithm (EPSCA) with multiobjective function (MOF). EPSCA is developed by merging evolutionary programming and the sine cosine algorithm. Three stability indicators, i.

View Article and Find Full Text PDF

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

Nat Commun

January 2025

Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.

View Article and Find Full Text PDF

Developing sustainable and eco-friendly packaging solutions has garnered significant interest in recent years. Mucilage-based coatings and composites offer a promising approach due to their biodegradability, renewable nature, and ability to enhance food quality protection. This review paper discusses the impact of mucilage-based composites and coatings on various packaging applications, focusing on their physical, mechanical, morphological, barrier, and functional properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!