Arrestin and its splice variant Arr1-370A (p44). Mechanism and biological role of their interaction with rhodopsin.

J Biol Chem

Institut für Medizinische Physik und Biophysik, Humboldt-Universität zu Berlin, Universitätsklinikum Charité, Schumannstrasse 20-21, Germany.

Published: November 2002

Deactivation of G-protein-coupled receptors relies on a timely blockade by arrestin. However, under dim light conditions, virtually all arrestin is in the rod inner segment, and the splice variant p(44) (Arr(1-370A)) is the stop protein responsible for receptor deactivation. Using size exclusion chromatography and biophysical assays for membrane-bound protein-protein interaction, membrane binding, and G-protein activation, we have investigated the interactions of Arr(1-370A) and proteolytically truncated Arr(3-367) with rhodopsin. We find that these short arrestins do not only interact with the phosphorylated active receptor but also with inactive phosphorylated rhodopsin or opsin in membranes or solution. Because of the latter interaction they are not soluble (like arrestin) but membrane-bound in the dark. Upon photoexcitation, Arr(3-367) and Arr(1-370A) interact with prephosphorylated rhodopsin faster than arrestin and start to quench G(t) activation on a subsecond time scale. The data indicate that in the course of rhodopsin deactivation, Arr(1-370A) is handed over from inactive to active phosphorylated rhodopsin. This mechanism could provide a new aspect of receptor shutoff in the single photon operating range of the rod cell.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M206211200DOI Listing

Publication Analysis

Top Keywords

splice variant
8
rhodopsin deactivation
8
phosphorylated rhodopsin
8
rhodopsin
6
arrestin
5
arr1-370a
5
arrestin splice
4
variant arr1-370a
4
arr1-370a p44
4
p44 mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!